auffusion / utils.py
fffiloni's picture
Migrated from GitHub
b140fcf verified
import os, json
import math, random
from multiprocessing import Pool
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
import matplotlib.pyplot as plt
from torchvision import transforms
from transformers import CLIPTextModel
from transformers import PretrainedConfig
def pad_spec(spec, spec_length, pad_value=0, random_crop=True): # spec: [3, mel_dim, spec_len]
assert spec_length % 8 == 0, "spec_length must be divisible by 8"
if spec.shape[-1] < spec_length:
# pad spec to spec_length
spec = F.pad(spec, (0, spec_length - spec.shape[-1]), value=pad_value)
else:
# random crop
if random_crop:
start = random.randint(0, spec.shape[-1] - spec_length)
spec = spec[:, :, start:start+spec_length]
else:
spec = spec[:, :, :spec_length]
return spec
def load_spec(spec_path):
if spec_path.endswith(".pt"):
spec = torch.load(spec_path, map_location="cpu")
elif spec_path.endswith(".npy"):
spec = torch.from_numpy(np.load(spec_path))
else:
raise ValueError(f"Unknown spec file type {spec_path}")
assert len(spec.shape) == 3, f"spec shape must be [3, mel_dim, spec_len], got {spec.shape}"
if spec.size(0) == 1:
spec = spec.repeat(3, 1, 1)
return spec
def random_crop_spec(spec, target_spec_length, pad_value=0, frame_per_sec=100, time_step=5): # spec: [3, mel_dim, spec_len]
assert target_spec_length % 8 == 0, "spec_length must be divisible by 8"
spec_length = spec.shape[-1]
full_s = math.ceil(spec_length / frame_per_sec / time_step) * time_step # get full seconds(ceil)
start_s = random.randint(0, math.floor(spec_length / frame_per_sec / time_step)) * time_step # random get start seconds
end_s = min(start_s + math.ceil(target_spec_length / frame_per_sec), full_s) # get end seconds
spec = spec[:, :, start_s * frame_per_sec : end_s * frame_per_sec] # get spec in seconds(crop more than target_spec_length because ceiling)
if spec.shape[-1] < target_spec_length:
spec = F.pad(spec, (0, target_spec_length - spec.shape[-1]), value=pad_value) # pad to target_spec_length
else:
spec = spec[:, :, :target_spec_length] # crop to target_spec_length
return spec, int(start_s), int(end_s), int(full_s)
def load_condion_embed(text_embed_path):
if text_embed_path.endswith(".pt"):
text_embed_list = torch.load(text_embed_path, map_location="cpu")
elif text_embed_path.endswith(".npy"):
text_embed_list = torch.from_numpy(np.load(text_embed_path))
else:
raise ValueError(f"Unknown text embedding file type {text_embed_path}")
if type(text_embed_list) == list:
text_embed = random.choice(text_embed_list)
if len(text_embed.shape) == 3: # [1, text_len, text_dim]
text_embed = text_embed.squeeze(0) # random choice and return text_emb: [text_len, text_dim]
return text_embed.detach().cpu()
def process_condition_embed(cond_emb, max_length): # [text_len, text_dim], Padding 0 and random drop by CFG
if cond_emb.shape[0] < max_length:
cond_emb = F.pad(cond_emb, (0, 0, 0, max_length - cond_emb.shape[0]), value=0)
else:
cond_emb = cond_emb[:max_length, :]
return cond_emb
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
if "t5" in model_class.lower():
from transformers import T5EncoderModel
return T5EncoderModel
if "clap" in model_class.lower():
from transformers import ClapTextModelWithProjection
return ClapTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def str2bool(string):
str2val = {"True": True, "False": False, "true": True, "false": False, "none": False, "None": False}
if string in str2val:
return str2val[string]
else:
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
def str2str(string):
if string.lower() == "none" or string.lower() == "null" or string.lower() == "false" or string == "":
return None
else:
return string
def json_dump(data_json, json_save_path):
with open(json_save_path, 'w') as f:
json.dump(data_json, f, indent=4)
f.close()
def json_load(json_path):
with open(json_path, 'r') as f:
data = json.load(f)
f.close()
return data
def load_json_list(path):
with open(path, 'r', encoding='utf-8') as f:
return [json.loads(line) for line in f.readlines()]
def save_json_list(data, path):
with open(path, 'w', encoding='utf-8') as f:
for d in data:
f.write(json.dumps(d) + '\n')
def multiprocess_function(func, func_args, n_jobs=32):
with Pool(processes=n_jobs) as p:
with tqdm(total=len(func_args)) as pbar:
for i, _ in enumerate(p.imap_unordered(func, func_args)):
pbar.update()
def image_add_color(spec_img):
cmap = plt.get_cmap('viridis')
cmap_r = cmap.reversed()
image = cmap(np.array(spec_img)[:,:,0])[:, :, :3] # 省略透明度通道
image = (image - image.min()) / (image.max() - image.min())
image = Image.fromarray(np.uint8(image*255))
return image
@staticmethod
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
"""
Convert a PyTorch tensor to a NumPy image.
"""
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
return images
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
### CODE FOR INPAITING ###
def normalize(images):
"""
Normalize an image array to [-1,1].
"""
if images.min() >= 0:
return 2.0 * images - 1.0
else:
return images
def denormalize(images):
"""
Denormalize an image array to [0,1].
"""
if images.min() < 0:
return (images / 2 + 0.5).clamp(0, 1)
else:
return images.clamp(0, 1)
def prepare_mask_and_masked_image(image, mask):
"""
Prepare a binary mask and the masked image.
Parameters:
- image (torch.Tensor): The input image tensor of shape [3, height, width] with values in the range [0, 1].
- mask (torch.Tensor): The input mask tensor of shape [1, height, width].
Returns:
- tuple: A tuple containing the binary mask and the masked image.
"""
# Noralize image to [0,1]
if image.max() > 1:
image = (image - image.min()) / (image.max() - image.min())
# Normalize image from [0,1] to [-1,1]
if image.min() >= 0:
image = normalize(image)
# Apply the mask to the image
masked_image = image * (mask < 0.5)
return mask, masked_image
def torch_to_pil(image):
"""
Convert a torch tensor to a PIL image.
"""
if image.min() < 0:
image = denormalize(image)
return transforms.ToPILImage()(image.cpu().detach().squeeze())
# class TextEncoderAdapter(nn.Module):
# def __init__(self, hidden_size, cross_attention_dim=768):
# super(TextEncoderAdapter, self).__init__()
# self.hidden_size = hidden_size
# self.cross_attention_dim = cross_attention_dim
# self.proj = nn.Linear(self.hidden_size, self.cross_attention_dim)
# self.norm = torch.nn.LayerNorm(self.cross_attention_dim)
# def forward(self, x):
# x = self.proj(x)
# x = self.norm(x)
# return x
# def save_pretrained(self, save_directory, subfolder=""):
# if subfolder:
# save_directory = os.path.join(save_directory, subfolder)
# os.makedirs(save_directory, exist_ok=True)
# ckpt_path = os.path.join(save_directory, "adapter.pt")
# config_path = os.path.join(save_directory, "config.json")
# config = {"hidden_size": self.hidden_size, "cross_attention_dim": self.cross_attention_dim}
# json_dump(config, config_path)
# torch.save(self.state_dict(), ckpt_path)
# print(f"Saving adapter model to {ckpt_path}")
# @classmethod
# def from_pretrained(cls, load_directory, subfolder=""):
# if subfolder:
# load_directory = os.path.join(load_directory, subfolder)
# ckpt_path = os.path.join(load_directory, "adapter.pt")
# config_path = os.path.join(load_directory, "config.json")
# config = json_load(config_path)
# instance = cls(**config)
# instance.load_state_dict(torch.load(ckpt_path))
# print(f"Loading adapter model from {ckpt_path}")
# return instance
class ConditionAdapter(nn.Module):
def __init__(self, config):
super(ConditionAdapter, self).__init__()
self.config = config
self.proj = nn.Linear(self.config["condition_dim"], self.config["cross_attention_dim"])
self.norm = torch.nn.LayerNorm(self.config["cross_attention_dim"])
print(f"INITIATED: ConditionAdapter: {self.config}")
def forward(self, x):
x = self.proj(x)
x = self.norm(x)
return x
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path):
config_path = os.path.join(pretrained_model_name_or_path, "config.json")
ckpt_path = os.path.join(pretrained_model_name_or_path, "condition_adapter.pt")
config = json_load(config_path)
instance = cls(config)
instance.load_state_dict(torch.load(ckpt_path))
print(f"LOADED: ConditionAdapter from {pretrained_model_name_or_path}")
return instance
def save_pretrained(self, pretrained_model_name_or_path):
os.makedirs(pretrained_model_name_or_path, exist_ok=True)
config_path = os.path.join(pretrained_model_name_or_path, "config.json")
ckpt_path = os.path.join(pretrained_model_name_or_path, "condition_adapter.pt")
json_dump(self.config, config_path)
torch.save(self.state_dict(), ckpt_path)
print(f"SAVED: ConditionAdapter {self.config['condition_adapter_name']} to {pretrained_model_name_or_path}")
# class TextEncoderWrapper(CLIPTextModel):
# def __init__(self, text_encoder, text_encoder_adapter):
# super().__init__(text_encoder.config)
# self.text_encoder = text_encoder
# self.adapter = text_encoder_adapter
# def forward(self, input_ids, **kwargs):
# outputs = self.text_encoder(input_ids, **kwargs)
# adapted_output = self.adapter(outputs[0])
# return [adapted_output] # to compatible with last_hidden_state