Spaces:
Running
on
Zero
Running
on
Zero
add video process tabs
Browse files- gradio_app.py +100 -56
gradio_app.py
CHANGED
@@ -6,22 +6,32 @@ import torchaudio.transforms as T
|
|
6 |
import soundfile as sf
|
7 |
import gradio as gr
|
8 |
import spaces
|
|
|
9 |
import look2hear.models
|
10 |
|
11 |
-
# Setup device
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
# Load models
|
15 |
-
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache")
|
16 |
-
|
17 |
-
|
18 |
-
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache")
|
19 |
-
sep_model.to(device).eval()
|
20 |
|
21 |
TARGET_SR = 16000
|
22 |
MAX_SPEAKERS = 4
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
@spaces.GPU()
|
26 |
def separate_dnr(audio_file):
|
27 |
audio, sr = torchaudio.load(audio_file)
|
@@ -30,22 +40,22 @@ def separate_dnr(audio_file):
|
|
30 |
with torch.no_grad():
|
31 |
dialog, effect, music = dnr_model(audio[None])
|
32 |
|
33 |
-
# Unique output folder
|
34 |
session_id = uuid.uuid4().hex[:8]
|
35 |
output_dir = os.path.join("output_dnr", session_id)
|
36 |
os.makedirs(output_dir, exist_ok=True)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
torchaudio.save(
|
43 |
-
torchaudio.save(
|
44 |
-
torchaudio.save(
|
45 |
|
46 |
-
return
|
47 |
|
48 |
-
# --- Speaker Separation Function ---
|
49 |
@spaces.GPU()
|
50 |
def separate_speakers(audio_path):
|
51 |
waveform, original_sr = torchaudio.load(audio_path)
|
@@ -57,11 +67,8 @@ def separate_speakers(audio_path):
|
|
57 |
audio_input = waveform.unsqueeze(0).to(device)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
-
ests_speech = sep_model(audio_input)
|
61 |
-
|
62 |
-
ests_speech = ests_speech.squeeze(0)
|
63 |
|
64 |
-
# Unique output folder
|
65 |
session_id = uuid.uuid4().hex[:8]
|
66 |
output_dir = os.path.join("output_sep", session_id)
|
67 |
os.makedirs(output_dir, exist_ok=True)
|
@@ -69,8 +76,7 @@ def separate_speakers(audio_path):
|
|
69 |
output_files = []
|
70 |
for i in range(ests_speech.shape[0]):
|
71 |
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
72 |
-
|
73 |
-
sf.write(path, audio_np.T, TARGET_SR) # Transpose only if shape is [T, C], usually not needed
|
74 |
output_files.append(path)
|
75 |
|
76 |
updates = []
|
@@ -81,7 +87,57 @@ def separate_speakers(audio_path):
|
|
81 |
updates.append(gr.update(value=None, visible=False))
|
82 |
return updates
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
|
87 |
gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")
|
@@ -97,51 +153,39 @@ with gr.Blocks() as demo:
|
|
97 |
</a>
|
98 |
</div>
|
99 |
""")
|
100 |
-
with gr.Tabs():
|
101 |
-
# --- Tab 1: DnR ---
|
102 |
-
with gr.Tab("Dialog/Effects/Music Separation (DnR)"):
|
103 |
-
gr.Markdown("### Separate Dialog, Effects, and Music from Mixed Audio")
|
104 |
-
|
105 |
-
dnr_input = gr.Audio(type="filepath", label="Upload Audio File")
|
106 |
-
dnr_button = gr.Button("Separate Audio")
|
107 |
|
|
|
|
|
|
|
|
|
108 |
gr.Examples(
|
109 |
examples = ["./test/test_mixture_466.wav"],
|
110 |
inputs = dnr_input
|
111 |
)
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
dnr_output_effect = gr.Audio(label="Effects", type="filepath")
|
115 |
-
dnr_output_music = gr.Audio(label="Music", type="filepath")
|
116 |
-
|
117 |
-
dnr_button.click(
|
118 |
-
fn=separate_dnr,
|
119 |
-
inputs=dnr_input,
|
120 |
-
outputs=[dnr_output_dialog, dnr_output_effect, dnr_output_music]
|
121 |
-
)
|
122 |
-
|
123 |
-
# --- Tab 2: Speaker Separation ---
|
124 |
-
with gr.Tab("Speaker Separation"):
|
125 |
-
gr.Markdown("### Separate Individual Speakers from Mixed Speech")
|
126 |
-
|
127 |
sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
|
128 |
-
|
129 |
-
|
130 |
gr.Examples(
|
131 |
examples = ["./test/mix.wav"],
|
132 |
inputs = sep_input
|
133 |
)
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
)
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
-
demo.launch()
|
|
|
6 |
import soundfile as sf
|
7 |
import gradio as gr
|
8 |
import spaces
|
9 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
|
10 |
import look2hear.models
|
11 |
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
# Load models
|
15 |
+
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache").to(device).eval()
|
16 |
+
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache").to(device).eval()
|
|
|
|
|
|
|
17 |
|
18 |
TARGET_SR = 16000
|
19 |
MAX_SPEAKERS = 4
|
20 |
|
21 |
+
def extract_audio_from_video(video_path):
|
22 |
+
video = VideoFileClip(video_path)
|
23 |
+
session_id = uuid.uuid4().hex[:8]
|
24 |
+
audio_path = f"temp_audio/{session_id}.wav"
|
25 |
+
os.makedirs("temp_audio", exist_ok=True)
|
26 |
+
video.audio.write_audiofile(audio_path, fps=44100, verbose=False, logger=None)
|
27 |
+
return audio_path, video
|
28 |
+
|
29 |
+
def attach_audio_to_video(original_video, audio_path, out_path):
|
30 |
+
new_audio = AudioFileClip(audio_path)
|
31 |
+
new_video = original_video.set_audio(new_audio)
|
32 |
+
new_video.write_videofile(out_path, audio_codec='aac', verbose=False, logger=None)
|
33 |
+
return out_path
|
34 |
+
|
35 |
@spaces.GPU()
|
36 |
def separate_dnr(audio_file):
|
37 |
audio, sr = torchaudio.load(audio_file)
|
|
|
40 |
with torch.no_grad():
|
41 |
dialog, effect, music = dnr_model(audio[None])
|
42 |
|
|
|
43 |
session_id = uuid.uuid4().hex[:8]
|
44 |
output_dir = os.path.join("output_dnr", session_id)
|
45 |
os.makedirs(output_dir, exist_ok=True)
|
46 |
|
47 |
+
paths = {
|
48 |
+
"dialog": os.path.join(output_dir, "dialog.wav"),
|
49 |
+
"effect": os.path.join(output_dir, "effect.wav"),
|
50 |
+
"music": os.path.join(output_dir, "music.wav"),
|
51 |
+
}
|
52 |
|
53 |
+
torchaudio.save(paths["dialog"], dialog.cpu(), sr)
|
54 |
+
torchaudio.save(paths["effect"], effect.cpu(), sr)
|
55 |
+
torchaudio.save(paths["music"], music.cpu(), sr)
|
56 |
|
57 |
+
return paths["dialog"], paths["effect"], paths["music"]
|
58 |
|
|
|
59 |
@spaces.GPU()
|
60 |
def separate_speakers(audio_path):
|
61 |
waveform, original_sr = torchaudio.load(audio_path)
|
|
|
67 |
audio_input = waveform.unsqueeze(0).to(device)
|
68 |
|
69 |
with torch.no_grad():
|
70 |
+
ests_speech = sep_model(audio_input).squeeze(0)
|
|
|
|
|
71 |
|
|
|
72 |
session_id = uuid.uuid4().hex[:8]
|
73 |
output_dir = os.path.join("output_sep", session_id)
|
74 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
76 |
output_files = []
|
77 |
for i in range(ests_speech.shape[0]):
|
78 |
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
79 |
+
sf.write(path, ests_speech[i].cpu().numpy(), TARGET_SR)
|
|
|
80 |
output_files.append(path)
|
81 |
|
82 |
updates = []
|
|
|
87 |
updates.append(gr.update(value=None, visible=False))
|
88 |
return updates
|
89 |
|
90 |
+
@spaces.GPU()
|
91 |
+
def separate_dnr_video(video_path):
|
92 |
+
audio_path, video = extract_audio_from_video(video_path)
|
93 |
+
dialog_path, effect_path, music_path = separate_dnr(audio_path)
|
94 |
+
|
95 |
+
session_id = uuid.uuid4().hex[:8]
|
96 |
+
output_dir = os.path.join("output_dnr_video", session_id)
|
97 |
+
os.makedirs(output_dir, exist_ok=True)
|
98 |
+
|
99 |
+
dialog_video = attach_audio_to_video(video, dialog_path, os.path.join(output_dir, "dialog_video.mp4"))
|
100 |
+
effect_video = attach_audio_to_video(video, effect_path, os.path.join(output_dir, "effect_video.mp4"))
|
101 |
+
music_video = attach_audio_to_video(video, music_path, os.path.join(output_dir, "music_video.mp4"))
|
102 |
+
|
103 |
+
return dialog_video, effect_video, music_video
|
104 |
+
|
105 |
+
@spaces.GPU()
|
106 |
+
def separate_speakers_video(video_path):
|
107 |
+
audio_path, video = extract_audio_from_video(video_path)
|
108 |
+
|
109 |
+
waveform, original_sr = torchaudio.load(audio_path)
|
110 |
+
if original_sr != TARGET_SR:
|
111 |
+
waveform = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR)(waveform)
|
112 |
+
|
113 |
+
if waveform.dim() == 1:
|
114 |
+
waveform = waveform.unsqueeze(0)
|
115 |
+
audio_input = waveform.unsqueeze(0).to(device)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
ests_speech = sep_model(audio_input).squeeze(0)
|
119 |
+
|
120 |
+
session_id = uuid.uuid4().hex[:8]
|
121 |
+
output_dir = os.path.join("output_sep_video", session_id)
|
122 |
+
os.makedirs(output_dir, exist_ok=True)
|
123 |
+
|
124 |
+
output_videos = []
|
125 |
+
for i in range(ests_speech.shape[0]):
|
126 |
+
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
127 |
+
sf.write(path, ests_speech[i].cpu().numpy(), TARGET_SR)
|
128 |
+
video_path = os.path.join(output_dir, f"speaker_{i+1}_video.mp4")
|
129 |
+
attach_audio_to_video(video, path, video_path)
|
130 |
+
output_videos.append(video_path)
|
131 |
+
|
132 |
+
updates = []
|
133 |
+
for i in range(MAX_SPEAKERS):
|
134 |
+
if i < len(output_videos):
|
135 |
+
updates.append(gr.update(value=output_videos[i], visible=True, label=f"Speaker {i+1}"))
|
136 |
+
else:
|
137 |
+
updates.append(gr.update(value=None, visible=False))
|
138 |
+
return updates
|
139 |
+
|
140 |
+
# --- Gradio UI ---
|
141 |
with gr.Blocks() as demo:
|
142 |
gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
|
143 |
gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")
|
|
|
153 |
</a>
|
154 |
</div>
|
155 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
with gr.Tabs():
|
158 |
+
with gr.Tab("Audio DnR"):
|
159 |
+
dnr_input = gr.Audio(type="filepath", label="Upload Audio")
|
160 |
+
dnr_btn = gr.Button("Separate")
|
161 |
gr.Examples(
|
162 |
examples = ["./test/test_mixture_466.wav"],
|
163 |
inputs = dnr_input
|
164 |
)
|
165 |
+
dnr_output = [gr.Audio(label=l) for l in ["Dialog", "Effects", "Music"]]
|
166 |
+
dnr_btn.click(separate_dnr, inputs=dnr_input, outputs=dnr_output)
|
167 |
|
168 |
+
with gr.Tab("Audio Speaker Separation"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
|
170 |
+
sep_btn = gr.Button("Separate Speakers")
|
|
|
171 |
gr.Examples(
|
172 |
examples = ["./test/mix.wav"],
|
173 |
inputs = sep_input
|
174 |
)
|
175 |
+
sep_outputs = [gr.Audio(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
|
176 |
+
sep_btn.click(separate_speakers, inputs=sep_input, outputs=sep_outputs)
|
177 |
|
178 |
+
with gr.Tab("Video DnR"):
|
179 |
+
vdnr_input = gr.Video(label="Upload Video")
|
180 |
+
vdnr_btn = gr.Button("Separate Audio Tracks")
|
181 |
+
vdnr_output = [gr.Video(label=l) for l in ["Dialog Video", "Effects Video", "Music Video"]]
|
182 |
+
vdnr_btn.click(separate_dnr_video, inputs=vdnr_input, outputs=vdnr_output)
|
183 |
|
184 |
+
with gr.Tab("Video Speaker Separation"):
|
185 |
+
vsep_input = gr.Video(label="Upload Video")
|
186 |
+
vsep_btn = gr.Button("Separate Speakers")
|
187 |
+
vsep_outputs = [gr.Video(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
|
188 |
+
vsep_btn.click(separate_speakers_video, inputs=vsep_input, outputs=vsep_outputs)
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
+
demo.launch()
|