Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,14 +6,205 @@ from pathlib import Path
|
|
| 6 |
stable_cascade_path = Path(__file__).parent / "third_party" / "StableCascade"
|
| 7 |
sys.path.append(str(stable_cascade_path))
|
| 8 |
|
| 9 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from inference.utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
gr.Interface(
|
| 16 |
fn = infer,
|
| 17 |
inputs=[gr.Textbox(label="style description"), gr.Image(label="Ref Style File", type="filepath"), gr.Textbox(label="caption")],
|
| 18 |
-
outputs=[gr.
|
| 19 |
).launch()
|
|
|
|
| 6 |
stable_cascade_path = Path(__file__).parent / "third_party" / "StableCascade"
|
| 7 |
sys.path.append(str(stable_cascade_path))
|
| 8 |
|
| 9 |
+
import yaml
|
| 10 |
+
import torch
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
from accelerate.utils import set_module_tensor_to_device
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
import torchvision.transforms as T
|
| 15 |
+
from lang_sam import LangSAM
|
| 16 |
from inference.utils import *
|
| 17 |
+
from core.utils import load_or_fail
|
| 18 |
+
from train import WurstCoreC, WurstCoreB
|
| 19 |
+
from gdf_rbm import RBM
|
| 20 |
+
from stage_c_rbm import StageCRBM
|
| 21 |
+
from utils import WurstCoreCRBM
|
| 22 |
+
from gdf.schedulers import CosineSchedule
|
| 23 |
+
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
| 24 |
+
from gdf.targets import EpsilonTarget
|
| 25 |
+
|
| 26 |
+
# Device configuration
|
| 27 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
print(device)
|
| 29 |
+
|
| 30 |
+
# Flag for low VRAM usage
|
| 31 |
+
low_vram = False
|
| 32 |
+
|
| 33 |
+
# Function definition for low VRAM usage
|
| 34 |
+
if low_vram:
|
| 35 |
+
def models_to(model, device="cpu", excepts=None):
|
| 36 |
+
"""
|
| 37 |
+
Change the device of nn.Modules within a class, skipping specified attributes.
|
| 38 |
+
"""
|
| 39 |
+
for attr_name in dir(model):
|
| 40 |
+
if attr_name.startswith('__') and attr_name.endswith('__'):
|
| 41 |
+
continue # skip special attributes
|
| 42 |
+
|
| 43 |
+
attr_value = getattr(model, attr_name, None)
|
| 44 |
+
|
| 45 |
+
if isinstance(attr_value, torch.nn.Module):
|
| 46 |
+
if excepts and attr_name in excepts:
|
| 47 |
+
print(f"Except '{attr_name}'")
|
| 48 |
+
continue
|
| 49 |
+
print(f"Change device of '{attr_name}' to {device}")
|
| 50 |
+
attr_value.to(device)
|
| 51 |
+
|
| 52 |
+
torch.cuda.empty_cache()
|
| 53 |
+
|
| 54 |
+
# Stage C model configuration
|
| 55 |
+
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
|
| 56 |
+
with open(config_file, "r", encoding="utf-8") as file:
|
| 57 |
+
loaded_config = yaml.safe_load(file)
|
| 58 |
+
|
| 59 |
+
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
|
| 60 |
+
|
| 61 |
+
# Stage B model configuration
|
| 62 |
+
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
|
| 63 |
+
with open(config_file_b, "r", encoding="utf-8") as file:
|
| 64 |
+
config_file_b = yaml.safe_load(file)
|
| 65 |
+
|
| 66 |
+
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
| 67 |
+
|
| 68 |
+
# Setup extras and models for Stage C
|
| 69 |
+
extras = core.setup_extras_pre()
|
| 70 |
+
|
| 71 |
+
gdf_rbm = RBM(
|
| 72 |
+
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
| 73 |
+
input_scaler=VPScaler(), target=EpsilonTarget(),
|
| 74 |
+
noise_cond=CosineTNoiseCond(),
|
| 75 |
+
loss_weight=AdaptiveLossWeight(),
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
sampling_configs = {
|
| 79 |
+
"cfg": 5,
|
| 80 |
+
"sampler": DDPMSampler(gdf_rbm),
|
| 81 |
+
"shift": 1,
|
| 82 |
+
"timesteps": 20
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
extras = core.Extras(
|
| 86 |
+
gdf=gdf_rbm,
|
| 87 |
+
sampling_configs=sampling_configs,
|
| 88 |
+
transforms=extras.transforms,
|
| 89 |
+
effnet_preprocess=extras.effnet_preprocess,
|
| 90 |
+
clip_preprocess=extras.clip_preprocess
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
models = core.setup_models(extras)
|
| 94 |
+
models.generator.eval().requires_grad_(False)
|
| 95 |
+
|
| 96 |
+
# Setup extras and models for Stage B
|
| 97 |
+
extras_b = core_b.setup_extras_pre()
|
| 98 |
+
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
| 99 |
+
models_b = WurstCoreB.Models(
|
| 100 |
+
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
| 101 |
+
)
|
| 102 |
+
models_b.generator.bfloat16().eval().requires_grad_(False)
|
| 103 |
+
|
| 104 |
+
# Off-load old generator (low VRAM mode)
|
| 105 |
+
if low_vram:
|
| 106 |
+
models.generator.to("cpu")
|
| 107 |
+
torch.cuda.empty_cache()
|
| 108 |
+
|
| 109 |
+
# Load and configure new generator
|
| 110 |
+
generator_rbm = StageCRBM()
|
| 111 |
+
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
|
| 112 |
+
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
|
| 113 |
|
| 114 |
+
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
|
| 115 |
+
generator_rbm = core.load_model(generator_rbm, 'generator')
|
| 116 |
+
|
| 117 |
+
# Create models_rbm instance
|
| 118 |
+
models_rbm = core.Models(
|
| 119 |
+
effnet=models.effnet,
|
| 120 |
+
previewer=models.previewer,
|
| 121 |
+
generator=generator_rbm,
|
| 122 |
+
generator_ema=models.generator_ema,
|
| 123 |
+
tokenizer=models.tokenizer,
|
| 124 |
+
text_model=models.text_model,
|
| 125 |
+
image_model=models.image_model
|
| 126 |
+
)
|
| 127 |
+
models_rbm.generator.eval().requires_grad_(False)
|
| 128 |
+
|
| 129 |
+
def infer(style_description, ref_style_file, caption):
|
| 130 |
+
|
| 131 |
+
height=1024
|
| 132 |
+
width=1024
|
| 133 |
+
batch_size=1
|
| 134 |
+
output_file='output.png'
|
| 135 |
+
|
| 136 |
+
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 137 |
+
|
| 138 |
+
extras.sampling_configs['cfg'] = 4
|
| 139 |
+
extras.sampling_configs['shift'] = 2
|
| 140 |
+
extras.sampling_configs['timesteps'] = 20
|
| 141 |
+
extras.sampling_configs['t_start'] = 1.0
|
| 142 |
+
|
| 143 |
+
extras_b.sampling_configs['cfg'] = 1.1
|
| 144 |
+
extras_b.sampling_configs['shift'] = 1
|
| 145 |
+
extras_b.sampling_configs['timesteps'] = 10
|
| 146 |
+
extras_b.sampling_configs['t_start'] = 1.0
|
| 147 |
+
|
| 148 |
+
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 149 |
+
|
| 150 |
+
batch = {'captions': [caption] * batch_size}
|
| 151 |
+
batch['style'] = ref_style
|
| 152 |
+
|
| 153 |
+
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
|
| 154 |
+
|
| 155 |
+
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
|
| 156 |
+
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
| 157 |
+
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
| 158 |
+
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
| 159 |
+
|
| 160 |
+
if low_vram:
|
| 161 |
+
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
| 162 |
+
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
| 163 |
+
|
| 164 |
+
# Stage C reverse process.
|
| 165 |
+
sampling_c = extras.gdf.sample(
|
| 166 |
+
models_rbm.generator, conditions, stage_c_latent_shape,
|
| 167 |
+
unconditions, device=device,
|
| 168 |
+
**extras.sampling_configs,
|
| 169 |
+
x0_style_forward=x0_style_forward,
|
| 170 |
+
apply_pushforward=False, tau_pushforward=8,
|
| 171 |
+
num_iter=3, eta=0.1, tau=20, eval_csd=True,
|
| 172 |
+
extras=extras, models=models_rbm,
|
| 173 |
+
lam_style=1, lam_txt_alignment=1.0,
|
| 174 |
+
use_ddim_sampler=True,
|
| 175 |
+
)
|
| 176 |
+
for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
|
| 177 |
+
sampled_c = sampled_c
|
| 178 |
+
|
| 179 |
+
# Stage B reverse process.
|
| 180 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 181 |
+
conditions_b['effnet'] = sampled_c
|
| 182 |
+
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
| 183 |
+
|
| 184 |
+
sampling_b = extras_b.gdf.sample(
|
| 185 |
+
models_b.generator, conditions_b, stage_b_latent_shape,
|
| 186 |
+
unconditions_b, device=device, **extras_b.sampling_configs,
|
| 187 |
+
)
|
| 188 |
+
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
|
| 189 |
+
sampled_b = sampled_b
|
| 190 |
+
sampled = models_b.stage_a.decode(sampled_b).float()
|
| 191 |
+
|
| 192 |
+
sampled = torch.cat([
|
| 193 |
+
torch.nn.functional.interpolate(ref_style.cpu(), size=height),
|
| 194 |
+
sampled.cpu(),
|
| 195 |
+
],
|
| 196 |
+
dim=0)
|
| 197 |
+
|
| 198 |
+
# Save the sampled image to a file
|
| 199 |
+
sampled_image = T.ToPILImage()(sampled.squeeze(0)) # Convert tensor to PIL image
|
| 200 |
+
sampled_image.save(output_file) # Save the image
|
| 201 |
+
|
| 202 |
+
return output_file # Return the path to the saved image
|
| 203 |
+
|
| 204 |
+
import gradio as gr
|
| 205 |
|
| 206 |
gr.Interface(
|
| 207 |
fn = infer,
|
| 208 |
inputs=[gr.Textbox(label="style description"), gr.Image(label="Ref Style File", type="filepath"), gr.Textbox(label="caption")],
|
| 209 |
+
outputs=[gr.Image()]
|
| 210 |
).launch()
|