Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
from tqdm.auto import tqdm | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from latentsync.models.syncnet import SyncNet | |
from latentsync.data.syncnet_dataset import SyncNetDataset | |
from diffusers import AutoencoderKL | |
from omegaconf import OmegaConf | |
from accelerate.utils import set_seed | |
def main(config): | |
set_seed(config.run.seed) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if config.data.latent_space: | |
vae = AutoencoderKL.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16 | |
) | |
vae.requires_grad_(False) | |
vae.to(device) | |
# Dataset and Dataloader setup | |
dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config) | |
test_dataloader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=config.data.batch_size, | |
shuffle=False, | |
num_workers=config.data.num_workers, | |
drop_last=False, | |
worker_init_fn=dataset.worker_init_fn, | |
) | |
# Model | |
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device) | |
print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}") | |
checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device) | |
syncnet.load_state_dict(checkpoint["state_dict"]) | |
syncnet.to(dtype=torch.float16) | |
syncnet.requires_grad_(False) | |
syncnet.eval() | |
global_step = 0 | |
num_val_batches = config.data.num_val_samples // config.data.batch_size | |
progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy") | |
num_correct_preds = 0 | |
num_total_preds = 0 | |
while True: | |
for step, batch in enumerate(test_dataloader): | |
### >>>> Test >>>> ### | |
frames = batch["frames"].to(device, dtype=torch.float16) | |
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) | |
y = batch["y"].to(device, dtype=torch.float16).squeeze(1) | |
if config.data.latent_space: | |
frames = rearrange(frames, "b f c h w -> (b f) c h w") | |
with torch.no_grad(): | |
frames = vae.encode(frames).latent_dist.sample() * 0.18215 | |
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames) | |
else: | |
frames = rearrange(frames, "b f c h w -> b (f c) h w") | |
if config.data.lower_half: | |
height = frames.shape[2] | |
frames = frames[:, :, height // 2 :, :] | |
with torch.no_grad(): | |
vision_embeds, audio_embeds = syncnet(frames, audio_samples) | |
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds) | |
preds = (sims > 0.5).to(dtype=torch.float16) | |
num_correct_preds += (preds == y).sum().item() | |
num_total_preds += len(sims) | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step >= num_val_batches: | |
progress_bar.close() | |
print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%") | |
return | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator") | |
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml") | |
args = parser.parse_args() | |
# Load a configuration file | |
config = OmegaConf.load(args.config_path) | |
main(config) | |