Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,6 +21,46 @@ model = AutoModelForCausalLM.from_pretrained(model_path, use_auth_token=hf_token
|
|
| 21 |
|
| 22 |
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
@spaces.GPU
|
| 25 |
def llama_gen_fragrance(scene):
|
| 26 |
|
|
@@ -247,8 +287,9 @@ def infer(image_input):
|
|
| 247 |
image_desc = extract_field(parsed, "Image Description")
|
| 248 |
|
| 249 |
print(image_desc)
|
|
|
|
| 250 |
|
| 251 |
-
return result, parsed
|
| 252 |
|
| 253 |
css="""
|
| 254 |
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
|
|
@@ -271,7 +312,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 271 |
#caption = gr.Textbox(label="Generated Caption")
|
| 272 |
fragrance = gr.Textbox(label="generated Fragrance", elem_id="fragrance")
|
| 273 |
json_res = gr.JSON(label="JSON")
|
|
|
|
| 274 |
|
| 275 |
-
submit_btn.click(fn=infer, inputs=[image_in], outputs=[fragrance, json_res])
|
| 276 |
|
| 277 |
demo.queue(max_size=12).launch(ssr_mode=False, mcp_server=True)
|
|
|
|
| 21 |
|
| 22 |
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
|
| 23 |
|
| 24 |
+
# FLUX
|
| 25 |
+
|
| 26 |
+
import numpy as np
|
| 27 |
+
import random
|
| 28 |
+
import torch
|
| 29 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
| 30 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 31 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 32 |
+
|
| 33 |
+
dtype = torch.bfloat16
|
| 34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
+
|
| 36 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 37 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 38 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 39 |
+
torch.cuda.empty_cache()
|
| 40 |
+
|
| 41 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 42 |
+
MAX_IMAGE_SIZE = 2048
|
| 43 |
+
|
| 44 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 45 |
+
|
| 46 |
+
@spaces.GPU
|
| 47 |
+
def infer_flux(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 48 |
+
if randomize_seed:
|
| 49 |
+
seed = random.randint(0, MAX_SEED)
|
| 50 |
+
generator = torch.Generator().manual_seed(seed)
|
| 51 |
+
|
| 52 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 53 |
+
prompt=prompt,
|
| 54 |
+
guidance_scale=guidance_scale,
|
| 55 |
+
num_inference_steps=num_inference_steps,
|
| 56 |
+
width=width,
|
| 57 |
+
height=height,
|
| 58 |
+
generator=generator,
|
| 59 |
+
output_type="pil",
|
| 60 |
+
good_vae=good_vae,
|
| 61 |
+
):
|
| 62 |
+
yield img
|
| 63 |
+
|
| 64 |
@spaces.GPU
|
| 65 |
def llama_gen_fragrance(scene):
|
| 66 |
|
|
|
|
| 287 |
image_desc = extract_field(parsed, "Image Description")
|
| 288 |
|
| 289 |
print(image_desc)
|
| 290 |
+
gen_bottle = infer_flux(image_desc)
|
| 291 |
|
| 292 |
+
return result, parsed, gen_bottle
|
| 293 |
|
| 294 |
css="""
|
| 295 |
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
|
|
|
|
| 312 |
#caption = gr.Textbox(label="Generated Caption")
|
| 313 |
fragrance = gr.Textbox(label="generated Fragrance", elem_id="fragrance")
|
| 314 |
json_res = gr.JSON(label="JSON")
|
| 315 |
+
bottle_res = gr.Image(label="Flacon")
|
| 316 |
|
| 317 |
+
submit_btn.click(fn=infer, inputs=[image_in], outputs=[fragrance, json_res, bottle_res])
|
| 318 |
|
| 319 |
demo.queue(max_size=12).launch(ssr_mode=False, mcp_server=True)
|