Spaces:
Running
Running
| import gradio as gr | |
| import os | |
| import subprocess | |
| import torch | |
| import gc | |
| from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel | |
| from diffusers.utils import export_to_video, load_image | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from datetime import datetime | |
| import random | |
| from moviepy.editor import VideoFileClip | |
| import ffmpeg | |
| from huggingface_hub import hf_hub_download | |
| # Ensure 'checkpoint' directory exists | |
| os.makedirs("checkpoints", exist_ok=True) | |
| # Download LoRA weights | |
| hf_hub_download( | |
| repo_id="wenqsun/DimensionX", | |
| filename="orbit_left_lora_weights.safetensors", | |
| local_dir="checkpoints" | |
| ) | |
| hf_hub_download( | |
| repo_id="wenqsun/DimensionX", | |
| filename="orbit_up_lora_weights.safetensors", | |
| local_dir="checkpoints" | |
| ) | |
| # Load models in the global scope | |
| model_id = "THUDM/CogVideoX-5b-I2V" | |
| transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu") | |
| text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu") | |
| vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu") | |
| tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer") | |
| pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16) | |
| # Add this near the top after imports | |
| os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' | |
| def calculate_resize_dimensions(width, height, max_width=1024): | |
| """Calculate new dimensions maintaining aspect ratio""" | |
| if width <= max_width: | |
| return width, height | |
| aspect_ratio = height / width | |
| new_width = max_width | |
| new_height = int(max_width * aspect_ratio) | |
| # Make height even number for video encoding | |
| new_height = new_height - (new_height % 2) | |
| return new_width, new_height | |
| def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)): | |
| # Move everything to CPU initially | |
| pipe.to("cpu") | |
| torch.cuda.empty_cache() | |
| # Load and get original image dimensions | |
| image = load_image(image_path) | |
| original_width, original_height = image.size | |
| print(f"IMAGE INPUT SIZE: {original_width} x {original_height}") | |
| # Calculate target dimensions maintaining aspect ratio | |
| target_width, target_height = calculate_resize_dimensions(original_width, original_height) | |
| print(f"TARGET SIZE: {target_width} x {target_height}") | |
| lora_path = "checkpoints/" | |
| weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors" | |
| lora_rank = 256 | |
| adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| # Load LoRA weights on CPU | |
| pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}") | |
| pipe.fuse_lora(lora_scale=1 / lora_rank) | |
| try: | |
| # Move to GPU just before inference | |
| pipe.to("cuda") | |
| torch.cuda.empty_cache() | |
| prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot." | |
| seed = random.randint(0, 2**8 - 1) | |
| with torch.inference_mode(): | |
| video = pipe( | |
| image, | |
| prompt, | |
| num_inference_steps=50, | |
| guidance_scale=7.0, | |
| use_dynamic_cfg=True, | |
| generator=torch.Generator(device="cpu").manual_seed(seed) | |
| ) | |
| finally: | |
| # Ensure cleanup happens even if inference fails | |
| pipe.to("cpu") | |
| pipe.unfuse_lora() | |
| pipe.unload_lora_weights() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| # Generate initial output video | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| temp_path = f"output_{timestamp}_temp.mp4" | |
| final_path = f"output_{timestamp}.mp4" | |
| # First export the original video | |
| export_to_video(video.frames[0], temp_path, fps=8) | |
| try: | |
| # Use ffmpeg via subprocess | |
| cmd = [ | |
| 'ffmpeg', | |
| '-i', temp_path, | |
| '-vf', f'scale={target_width}:{target_height}', | |
| '-c:v', 'libx264', | |
| '-preset', 'medium', | |
| '-crf', '23', | |
| '-y', # Overwrite output file if it exists | |
| final_path | |
| ] | |
| subprocess.run(cmd, check=True, capture_output=True) | |
| except subprocess.CalledProcessError as e: | |
| print(f"FFmpeg error: {e.stderr.decode()}") | |
| raise e | |
| finally: | |
| if os.path.exists(temp_path): | |
| os.remove(temp_path) | |
| return final_path | |
| # Set up Gradio UI | |
| with gr.Blocks(analytics_enabled=False) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# DimensionX") | |
| gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion") | |
| gr.HTML(""" | |
| <div style="display:flex;column-gap:4px;"> | |
| <a href="https://github.com/wenqsun/DimensionX"> | |
| <img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
| </a> | |
| <a href="https://chenshuo20.github.io/DimensionX/"> | |
| <img src='https://img.shields.io/badge/Project-Page-green'> | |
| </a> | |
| <a href="https://arxiv.org/abs/2411.04928"> | |
| <img src='https://img.shields.io/badge/ArXiv-Paper-red'> | |
| </a> | |
| <a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
| </a> | |
| <a href="https://huggingface.co/fffiloni"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF"> | |
| </a> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_in = gr.Image(label="Image Input", type="filepath") | |
| prompt = gr.Textbox(label="Prompt") | |
| orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| video_out = gr.Video(label="Video output") | |
| examples = gr.Examples( | |
| examples = [ | |
| [ | |
| "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg", | |
| "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.", | |
| "Left", | |
| "./examples/output_astronaut_left.mp4" | |
| ], | |
| [ | |
| "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg", | |
| "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.", | |
| "Up", | |
| "./examples/output_astronaut_up.mp4" | |
| ] | |
| ], | |
| inputs=[image_in, prompt, orbit_type, video_out] | |
| ) | |
| submit_btn.click( | |
| fn=infer, | |
| inputs=[image_in, prompt, orbit_type], | |
| outputs=[video_out] | |
| ) | |
| demo.queue().launch(show_error=True, show_api=False, ssr_mode=False) |