Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from dataclasses import dataclass | |
| from typing import Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from diffusers.image_processor import VaeImageProcessor | |
| # from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel | |
| from diffusers.models import AutoencoderKLTemporalDecoder | |
| from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel | |
| from diffusers.schedulers import EulerDiscreteScheduler | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| # from models_diffusers.adapter_model import SparsePointAdapter | |
| from models_diffusers.controlnet_svd import ControlNetSVDModel | |
| from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap | |
| from models_diffusers.camera.pose_adaptor import CameraPoseEncoder | |
| from einops import rearrange | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def _get_add_time_ids( | |
| noise_aug_strength, | |
| dtype, | |
| batch_size, | |
| fps=4, | |
| motion_bucket_id=128, | |
| unet=None, | |
| ): | |
| add_time_ids = [fps, motion_bucket_id, noise_aug_strength] | |
| passed_add_embed_dim = unet.config.addition_time_embed_dim * len(add_time_ids) | |
| expected_add_embed_dim = unet.add_embedding.linear_1.in_features | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| return add_time_ids | |
| def _append_dims(x, target_dims): | |
| """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | |
| dims_to_append = target_dims - x.ndim | |
| if dims_to_append < 0: | |
| raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") | |
| return x[(...,) + (None,) * dims_to_append] | |
| def tensor2vid(video: torch.Tensor, processor, output_type="np"): | |
| # Based on: | |
| # https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78 | |
| batch_size, channels, num_frames, height, width = video.shape | |
| outputs = [] | |
| for batch_idx in range(batch_size): | |
| batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
| batch_output = processor.postprocess(batch_vid, output_type) | |
| outputs.append(batch_output) | |
| return outputs | |
| class AniDocPipelineOutput(BaseOutput): | |
| r""" | |
| Output class for zero-shot text-to-video pipeline. | |
| Args: | |
| frames (`[List[PIL.Image.Image]`, `np.ndarray`]): | |
| List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, | |
| num_channels)`. | |
| """ | |
| frames: Union[List[PIL.Image.Image], np.ndarray] | |
| class AniDocPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline to generate video from an input image using Stable Video Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): | |
| Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)). | |
| unet ([`UNetSpatioTemporalConditionModel`]): | |
| A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents. | |
| scheduler ([`EulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images. | |
| """ | |
| model_cpu_offload_seq = "image_encoder->unet->vae" | |
| _callback_tensor_inputs = ["latents"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKLTemporalDecoder, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| unet: UNetSpatioTemporalConditionModel, | |
| scheduler: EulerDiscreteScheduler, | |
| feature_extractor: CLIPImageProcessor, | |
| controlnet: Optional[ControlNetSVDModel] = None, | |
| pose_encoder: Optional[CameraPoseEncoder] = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| controlnet=controlnet, | |
| pose_encoder=pose_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.image_processor.pil_to_numpy(image) | |
| image = self.image_processor.numpy_to_pt(image) | |
| # We normalize the image before resizing to match with the original implementation. | |
| # Then we unnormalize it after resizing. | |
| image = image * 2.0 - 1.0 | |
| image = _resize_with_antialiasing(image, (224, 224)) | |
| image = (image + 1.0) / 2.0 | |
| # Normalize the image with for CLIP input | |
| image = self.feature_extractor( | |
| images=image, | |
| do_normalize=True, | |
| do_center_crop=False, | |
| do_resize=False, | |
| do_rescale=False, | |
| return_tensors="pt", | |
| ).pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeddings = self.image_encoder(image).image_embeds | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_image_embeddings = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) | |
| return image_embeddings | |
| def _encode_vae_image( | |
| self, | |
| image: torch.Tensor, | |
| device, | |
| num_videos_per_prompt, | |
| do_classifier_free_guidance, | |
| ): | |
| image = image.to(device=device) | |
| image_latents = self.vae.encode(image).latent_dist.mode() | |
| if do_classifier_free_guidance: | |
| negative_image_latents = torch.zeros_like(image_latents) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_latents = torch.cat([negative_image_latents, image_latents]) | |
| # duplicate image_latents for each generation per prompt, using mps friendly method | |
| image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) | |
| return image_latents | |
| def _get_add_time_ids( | |
| self, | |
| fps, | |
| motion_bucket_id, | |
| noise_aug_strength, | |
| dtype, | |
| batch_size, | |
| num_videos_per_prompt, | |
| do_classifier_free_guidance, | |
| ): | |
| add_time_ids = [fps, motion_bucket_id, noise_aug_strength] | |
| passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids]) | |
| return add_time_ids | |
| def decode_latents(self, latents, num_frames, decode_chunk_size=14): | |
| # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width] | |
| latents = latents.flatten(0, 1) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| accepts_num_frames = "num_frames" in set(inspect.signature(self.vae.forward).parameters.keys()) | |
| # decode decode_chunk_size frames at a time to avoid OOM | |
| frames = [] | |
| for i in range(0, latents.shape[0], decode_chunk_size): | |
| num_frames_in = latents[i : i + decode_chunk_size].shape[0] | |
| decode_kwargs = {} | |
| if accepts_num_frames: | |
| # we only pass num_frames_in if it's expected | |
| decode_kwargs["num_frames"] = num_frames_in | |
| frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample | |
| frames.append(frame) | |
| frames = torch.cat(frames, dim=0) | |
| # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width] | |
| frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| frames = frames.float() | |
| return frames | |
| def check_inputs(self, image, height, width): | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
| f" {type(image)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_frames, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_frames, | |
| num_channels_latents // 2, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], | |
| controlnet_condition: torch.FloatTensor = None, | |
| height: int = 576, | |
| width: int = 1024, | |
| num_frames: Optional[int] = None, | |
| num_inference_steps: int = 25, | |
| min_guidance_scale: float = 1.0, | |
| max_guidance_scale: float = 3.0, | |
| fps: int = 7, | |
| motion_bucket_id: int = 127, | |
| noise_aug_strength: int = 0.02, | |
| decode_chunk_size: Optional[int] = None, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| return_dict: bool = True, | |
| controlnet_cond_scale=1.0, | |
| batch_size=1, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): | |
| Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
| [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_frames (`int`, *optional*): | |
| The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt` | |
| num_inference_steps (`int`, *optional*, defaults to 25): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| min_guidance_scale (`float`, *optional*, defaults to 1.0): | |
| The minimum guidance scale. Used for the classifier free guidance with first frame. | |
| max_guidance_scale (`float`, *optional*, defaults to 3.0): | |
| The maximum guidance scale. Used for the classifier free guidance with last frame. | |
| fps (`int`, *optional*, defaults to 7): | |
| Frames per second. The rate at which the generated images shall be exported to a video after generation. | |
| Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training. | |
| motion_bucket_id (`int`, *optional*, defaults to 127): | |
| The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video. | |
| noise_aug_strength (`int`, *optional*, defaults to 0.02): | |
| The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion. | |
| decode_chunk_size (`int`, *optional*): | |
| The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency | |
| between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once | |
| for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. | |
| num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableVideoDiffusionInterpControlPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionInterpControlPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list of list with the generated frames. | |
| Examples: | |
| ```py | |
| from diffusers import StableVideoDiffusionPipeline | |
| from diffusers.utils import load_image, export_to_video | |
| pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16") | |
| pipe.to("cuda") | |
| image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200") | |
| image = image.resize((1024, 576)) | |
| frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0] | |
| export_to_video(frames, "generated.mp4", fps=7) | |
| ``` | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| num_frames = num_frames if num_frames is not None else self.unet.config.num_frames | |
| decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(image, height, width) | |
| # 2. Define call parameters | |
| #if isinstance(image, PIL.Image.Image): | |
| # batch_size = 1 | |
| #elif isinstance(image, list): | |
| # batch_size = len(image) | |
| #else: | |
| # batch_size = image.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = max_guidance_scale > 1.0 | |
| # 3. Encode input image | |
| image_embeddings = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance) | |
| # NOTE: Stable Diffusion Video was conditioned on fps - 1, which | |
| # is why it is reduced here. | |
| # See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188 | |
| fps = fps - 1 | |
| # 4. Encode input image using VAE | |
| image = self.image_processor.preprocess(image, height=height, width=width) | |
| noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype) | |
| image = image + noise_aug_strength * noise | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float32) | |
| image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, do_classifier_free_guidance) | |
| image_latents = image_latents.to(image_embeddings.dtype) | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| # Repeat the image latents for each frame so we can concatenate them with the noise | |
| # image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width] | |
| # image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1) | |
| #image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | |
| # 5. Get Added Time IDs | |
| added_time_ids = self._get_add_time_ids( | |
| fps, | |
| motion_bucket_id, | |
| noise_aug_strength, | |
| image_embeddings.dtype, | |
| batch_size, | |
| num_videos_per_prompt, | |
| do_classifier_free_guidance, | |
| ) | |
| added_time_ids = added_time_ids.to(device) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| num_frames, | |
| num_channels_latents, | |
| height, | |
| width, | |
| image_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| image_latents = image_latents.unsqueeze(1) # (1, 1, 4, h, w) | |
| bsz, num_frames, _, latent_h, latent_w = latents.shape | |
| bsz_cfg = bsz * 2 | |
| image_latents=image_latents.repeat(1, num_frames, 1, 1, 1) | |
| # image_end_latents = image_end_latents.unsqueeze(1) | |
| #image_latents = torch.cat([image_latents, conditional_latents_mask, image_end_latents], dim=1) | |
| # concate the conditions | |
| image_embeddings = image_embeddings | |
| # prepare controlnet condition | |
| assert controlnet_condition.shape[2]==8, "Controlnet condition should have 8 channels" | |
| # controlnet_condition = self.image_processor.preprocess(controlnet_condition, height=height, width=width) | |
| # controlnet_condition = controlnet_condition.unsqueeze(0) | |
| controlnet_condition=controlnet_condition | |
| controlnet_condition = torch.cat([controlnet_condition] * 2) | |
| controlnet_condition = controlnet_condition.to(device, latents.dtype) | |
| # 7. Prepare guidance scale | |
| guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) | |
| guidance_scale = guidance_scale.to(device, latents.dtype) | |
| guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1) | |
| guidance_scale = _append_dims(guidance_scale, latents.ndim) | |
| self._guidance_scale = guidance_scale | |
| noise_aug_strength = 0.02 | |
| added_time_ids = _get_add_time_ids( | |
| noise_aug_strength, | |
| image_embeddings.dtype, | |
| batch_size, | |
| 6, | |
| 128, | |
| unet=self.unet, | |
| ) | |
| added_time_ids = torch.cat([added_time_ids] * 2) | |
| added_time_ids = added_time_ids.to(latents.device) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # Concatenate image_latents over channels dimention | |
| latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=image_embeddings, | |
| controlnet_cond=controlnet_condition, | |
| added_time_ids=added_time_ids, | |
| conditioning_scale=controlnet_cond_scale, | |
| guess_mode=False, | |
| return_dict=False, | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=image_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_time_ids=added_time_ids, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if not output_type == "latent": | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| frames = self.decode_latents(latents, num_frames, decode_chunk_size) | |
| frames = tensor2vid(frames, self.image_processor, output_type=output_type) | |
| else: | |
| frames = latents | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return frames | |
| return AniDocPipelineOutput(frames=frames) | |
| # resizing utils | |
| # TODO: clean up later | |
| def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True): | |
| h, w = input.shape[-2:] | |
| factors = (h / size[0], w / size[1]) | |
| # First, we have to determine sigma | |
| # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171 | |
| sigmas = ( | |
| max((factors[0] - 1.0) / 2.0, 0.001), | |
| max((factors[1] - 1.0) / 2.0, 0.001), | |
| ) | |
| # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma | |
| # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206 | |
| # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now | |
| ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) | |
| # Make sure it is odd | |
| if (ks[0] % 2) == 0: | |
| ks = ks[0] + 1, ks[1] | |
| if (ks[1] % 2) == 0: | |
| ks = ks[0], ks[1] + 1 | |
| input = _gaussian_blur2d(input, ks, sigmas) | |
| output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) | |
| return output | |
| def _compute_padding(kernel_size): | |
| """Compute padding tuple.""" | |
| # 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom) | |
| # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad | |
| if len(kernel_size) < 2: | |
| raise AssertionError(kernel_size) | |
| computed = [k - 1 for k in kernel_size] | |
| # for even kernels we need to do asymmetric padding :( | |
| out_padding = 2 * len(kernel_size) * [0] | |
| for i in range(len(kernel_size)): | |
| computed_tmp = computed[-(i + 1)] | |
| pad_front = computed_tmp // 2 | |
| pad_rear = computed_tmp - pad_front | |
| out_padding[2 * i + 0] = pad_front | |
| out_padding[2 * i + 1] = pad_rear | |
| return out_padding | |
| def _filter2d(input, kernel): | |
| # prepare kernel | |
| b, c, h, w = input.shape | |
| tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) | |
| tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) | |
| height, width = tmp_kernel.shape[-2:] | |
| padding_shape: list[int] = _compute_padding([height, width]) | |
| input = torch.nn.functional.pad(input, padding_shape, mode="reflect") | |
| # kernel and input tensor reshape to align element-wise or batch-wise params | |
| tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) | |
| input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) | |
| # convolve the tensor with the kernel. | |
| output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) | |
| out = output.view(b, c, h, w) | |
| return out | |
| def _gaussian(window_size: int, sigma): | |
| if isinstance(sigma, float): | |
| sigma = torch.tensor([[sigma]]) | |
| batch_size = sigma.shape[0] | |
| x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) | |
| if window_size % 2 == 0: | |
| x = x + 0.5 | |
| gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) | |
| return gauss / gauss.sum(-1, keepdim=True) | |
| def _gaussian_blur2d(input, kernel_size, sigma): | |
| if isinstance(sigma, tuple): | |
| sigma = torch.tensor([sigma], dtype=input.dtype) | |
| else: | |
| sigma = sigma.to(dtype=input.dtype) | |
| ky, kx = int(kernel_size[0]), int(kernel_size[1]) | |
| bs = sigma.shape[0] | |
| kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1)) | |
| kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1)) | |
| out_x = _filter2d(input, kernel_x[..., None, :]) | |
| out = _filter2d(out_x, kernel_y[..., None]) | |
| return out | |