Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from typing import List, Tuple | |
| # from cameractrl.models.motion_module import TemporalTransformerBlock | |
| from models_diffusers.camera.motion_module import TemporalTransformerBlock | |
| def get_parameter_dtype(parameter: torch.nn.Module): | |
| try: | |
| params = tuple(parameter.parameters()) | |
| if len(params) > 0: | |
| return params[0].dtype | |
| buffers = tuple(parameter.buffers()) | |
| if len(buffers) > 0: | |
| return buffers[0].dtype | |
| except StopIteration: | |
| # For torch.nn.DataParallel compatibility in PyTorch 1.5 | |
| def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, torch.Tensor]]: | |
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
| return tuples | |
| gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
| first_tuple = next(gen) | |
| return first_tuple[1].dtype | |
| def conv_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D convolution module. | |
| """ | |
| if dims == 1: | |
| return nn.Conv1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.Conv3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def avg_pool_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D average pooling module. | |
| """ | |
| if dims == 1: | |
| return nn.AvgPool1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.AvgPool2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.AvgPool3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| class PoseAdaptor(nn.Module): | |
| def __init__(self, unet, pose_encoder): | |
| super().__init__() | |
| self.unet = unet | |
| self.pose_encoder = pose_encoder | |
| def forward(self, inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids, pose_embedding): | |
| assert pose_embedding.ndim == 5 | |
| pose_embedding_features = self.pose_encoder(pose_embedding) # b c f h w | |
| noise_pred = self.unet( | |
| inp_noisy_latents, | |
| timesteps, | |
| encoder_hidden_states, | |
| added_time_ids=added_time_ids, | |
| pose_features=pose_embedding_features, | |
| ).sample | |
| return noise_pred | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class ResnetBlock(nn.Module): | |
| def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): | |
| super().__init__() | |
| ps = ksize // 2 | |
| if in_c != out_c or sk == False: | |
| self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
| else: | |
| self.in_conv = None | |
| self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) | |
| self.act = nn.ReLU() | |
| self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) | |
| if sk == False: | |
| self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
| else: | |
| self.skep = None | |
| self.down = down | |
| if self.down == True: | |
| self.down_opt = Downsample(in_c, use_conv=use_conv) | |
| def forward(self, x): | |
| if self.down == True: | |
| x = self.down_opt(x) | |
| if self.in_conv is not None: # edit | |
| x = self.in_conv(x) | |
| h = self.block1(x) | |
| h = self.act(h) | |
| h = self.block2(h) | |
| if self.skep is not None: | |
| return h + self.skep(x) | |
| else: | |
| return h + x | |
| class PositionalEncoding(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| dropout=0., | |
| max_len=32, | |
| ): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| position = torch.arange(max_len).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
| pe = torch.zeros(1, max_len, d_model) | |
| pe[0, :, 0::2, ...] = torch.sin(position * div_term) | |
| pe[0, :, 1::2, ...] = torch.cos(position * div_term) | |
| pe.unsqueeze_(-1).unsqueeze_(-1) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| x = x + self.pe[:, :x.size(1), ...] | |
| return self.dropout(x) | |
| class CameraPoseEncoder(nn.Module): | |
| def __init__(self, | |
| downscale_factor, | |
| channels=[320, 640, 1280, 1280], | |
| nums_rb=3, | |
| cin=64, | |
| ksize=3, | |
| sk=False, | |
| use_conv=True, | |
| compression_factor=1, | |
| temporal_attention_nhead=8, | |
| attention_block_types=("Temporal_Self", ), | |
| temporal_position_encoding=False, | |
| temporal_position_encoding_max_len=16, | |
| rescale_output_factor=1.0): | |
| super(CameraPoseEncoder, self).__init__() | |
| self.unshuffle = nn.PixelUnshuffle(downscale_factor) | |
| self.channels = channels | |
| self.nums_rb = nums_rb | |
| self.encoder_down_conv_blocks = nn.ModuleList() | |
| self.encoder_down_attention_blocks = nn.ModuleList() | |
| for i in range(len(channels)): | |
| conv_layers = nn.ModuleList() | |
| temporal_attention_layers = nn.ModuleList() | |
| for j in range(nums_rb): | |
| if j == 0 and i != 0: | |
| in_dim = channels[i - 1] | |
| out_dim = int(channels[i] / compression_factor) | |
| conv_layer = ResnetBlock(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv) | |
| elif j == 0: | |
| in_dim = channels[0] | |
| out_dim = int(channels[i] / compression_factor) | |
| conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) | |
| elif j == nums_rb - 1: | |
| in_dim = channels[i] / compression_factor | |
| out_dim = channels[i] | |
| conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) | |
| else: | |
| in_dim = int(channels[i] / compression_factor) | |
| out_dim = int(channels[i] / compression_factor) | |
| conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) | |
| temporal_attention_layer = TemporalTransformerBlock(dim=out_dim, | |
| num_attention_heads=temporal_attention_nhead, | |
| attention_head_dim=int(out_dim / temporal_attention_nhead), | |
| attention_block_types=attention_block_types, | |
| dropout=0.0, | |
| cross_attention_dim=None, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| rescale_output_factor=rescale_output_factor) | |
| conv_layers.append(conv_layer) | |
| temporal_attention_layers.append(temporal_attention_layer) | |
| self.encoder_down_conv_blocks.append(conv_layers) | |
| self.encoder_down_attention_blocks.append(temporal_attention_layers) | |
| self.encoder_conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) | |
| def dtype(self) -> torch.dtype: | |
| """ | |
| `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
| """ | |
| return get_parameter_dtype(self) | |
| def forward(self, x): | |
| # unshuffle | |
| bs = x.shape[0] | |
| x = rearrange(x, "b f c h w -> (b f) c h w") | |
| x = self.unshuffle(x) | |
| # extract features | |
| features = [] | |
| x = self.encoder_conv_in(x) | |
| for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks): | |
| for res_layer, attention_layer in zip(res_block, attention_block): | |
| x = res_layer(x) | |
| h, w = x.shape[-2:] | |
| x = rearrange(x, '(b f) c h w -> (b h w) f c', b=bs) | |
| x = attention_layer(x) | |
| x = rearrange(x, '(b h w) f c -> (b f) c h w', h=h, w=w) | |
| features.append(rearrange(x, '(b f) c h w -> b c f h w', b=bs)) | |
| return features | |