Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import datasets | |
| import pandas as pd | |
| _CITATION = """\ | |
| @article{hendryckstest2021, | |
| title={Measuring Massive Multitask Language Understanding}, | |
| author={Dan Hendrycks and Collin Burns and others}, | |
| journal={Proceedings of the International Conference on Learning Representations (ICLR)}, | |
| year={2021} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart, | |
| Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021). | |
| """ | |
| _HOMEPAGE = "https://github.com/hendrycks/test" | |
| _LICENSE = "MIT" | |
| _URL = "mmlu.zip" | |
| task_list = [ | |
| "high_school_european_history", | |
| "business_ethics", | |
| "clinical_knowledge", | |
| "medical_genetics", | |
| "high_school_us_history", | |
| "high_school_physics", | |
| "high_school_world_history", | |
| "virology", | |
| "high_school_microeconomics", | |
| "econometrics", | |
| "college_computer_science", | |
| "high_school_biology", | |
| "abstract_algebra", | |
| "professional_accounting", | |
| "philosophy", | |
| "professional_medicine", | |
| "nutrition", | |
| "global_facts", | |
| "machine_learning", | |
| "security_studies", | |
| "public_relations", | |
| "professional_psychology", | |
| "prehistory", | |
| "anatomy", | |
| "human_sexuality", | |
| "college_medicine", | |
| "high_school_government_and_politics", | |
| "college_chemistry", | |
| "logical_fallacies", | |
| "high_school_geography", | |
| "elementary_mathematics", | |
| "human_aging", | |
| "college_mathematics", | |
| "high_school_psychology", | |
| "formal_logic", | |
| "high_school_statistics", | |
| "international_law", | |
| "high_school_mathematics", | |
| "high_school_computer_science", | |
| "conceptual_physics", | |
| "miscellaneous", | |
| "high_school_chemistry", | |
| "marketing", | |
| "professional_law", | |
| "management", | |
| "college_physics", | |
| "jurisprudence", | |
| "world_religions", | |
| "sociology", | |
| "us_foreign_policy", | |
| "high_school_macroeconomics", | |
| "computer_security", | |
| "moral_scenarios", | |
| "moral_disputes", | |
| "electrical_engineering", | |
| "astronomy", | |
| "college_biology", | |
| ] | |
| class MMLUConfig(datasets.BuilderConfig): | |
| def __init__(self, **kwargs): | |
| super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
| class MMLU(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| MMLUConfig( | |
| name=task_name, | |
| ) | |
| for task_name in task_list | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "question": datasets.Value("string"), | |
| "A": datasets.Value("string"), | |
| "B": datasets.Value("string"), | |
| "C": datasets.Value("string"), | |
| "D": datasets.Value("string"), | |
| "answer": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_dir = dl_manager.download_and_extract(_URL) | |
| task_name = self.config.name | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| df = pd.read_csv(filepath, header=None) | |
| df.columns = ["question", "A", "B", "C", "D", "answer"] | |
| yield from enumerate(df.to_dict(orient="records")) | |