Spaces:
Runtime error
Runtime error
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import numpy as np | |
| from skimage.measure import compare_ssim | |
| import torch | |
| from torch.autograd import Variable | |
| from lpips import dist_model | |
| class PerceptualLoss(torch.nn.Module): | |
| def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0]): # VGG using our perceptually-learned weights (LPIPS metric) | |
| # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss | |
| super(PerceptualLoss, self).__init__() | |
| print('Setting up Perceptual loss...') | |
| self.use_gpu = use_gpu | |
| self.spatial = spatial | |
| self.gpu_ids = gpu_ids | |
| self.model = dist_model.DistModel() | |
| self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids) | |
| print('...[%s] initialized'%self.model.name()) | |
| print('...Done') | |
| def forward(self, pred, target, normalize=False): | |
| """ | |
| Pred and target are Variables. | |
| If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] | |
| If normalize is False, assumes the images are already between [-1,+1] | |
| Inputs pred and target are Nx3xHxW | |
| Output pytorch Variable N long | |
| """ | |
| if normalize: | |
| target = 2 * target - 1 | |
| pred = 2 * pred - 1 | |
| return self.model.forward(target, pred) | |
| def normalize_tensor(in_feat,eps=1e-10): | |
| norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True)) | |
| return in_feat/(norm_factor+eps) | |
| def l2(p0, p1, range=255.): | |
| return .5*np.mean((p0 / range - p1 / range)**2) | |
| def psnr(p0, p1, peak=255.): | |
| return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2)) | |
| def dssim(p0, p1, range=255.): | |
| return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. | |
| def rgb2lab(in_img,mean_cent=False): | |
| from skimage import color | |
| img_lab = color.rgb2lab(in_img) | |
| if(mean_cent): | |
| img_lab[:,:,0] = img_lab[:,:,0]-50 | |
| return img_lab | |
| def tensor2np(tensor_obj): | |
| # change dimension of a tensor object into a numpy array | |
| return tensor_obj[0].cpu().float().numpy().transpose((1,2,0)) | |
| def np2tensor(np_obj): | |
| # change dimenion of np array into tensor array | |
| return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) | |
| def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False): | |
| # image tensor to lab tensor | |
| from skimage import color | |
| img = tensor2im(image_tensor) | |
| img_lab = color.rgb2lab(img) | |
| if(mc_only): | |
| img_lab[:,:,0] = img_lab[:,:,0]-50 | |
| if(to_norm and not mc_only): | |
| img_lab[:,:,0] = img_lab[:,:,0]-50 | |
| img_lab = img_lab/100. | |
| return np2tensor(img_lab) | |
| def tensorlab2tensor(lab_tensor,return_inbnd=False): | |
| from skimage import color | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| lab = tensor2np(lab_tensor)*100. | |
| lab[:,:,0] = lab[:,:,0]+50 | |
| rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1) | |
| if(return_inbnd): | |
| # convert back to lab, see if we match | |
| lab_back = color.rgb2lab(rgb_back.astype('uint8')) | |
| mask = 1.*np.isclose(lab_back,lab,atol=2.) | |
| mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis]) | |
| return (im2tensor(rgb_back),mask) | |
| else: | |
| return im2tensor(rgb_back) | |
| def rgb2lab(input): | |
| from skimage import color | |
| return color.rgb2lab(input / 255.) | |
| def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): | |
| image_numpy = image_tensor[0].cpu().float().numpy() | |
| image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor | |
| return image_numpy.astype(imtype) | |
| def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): | |
| return torch.Tensor((image / factor - cent) | |
| [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) | |
| def tensor2vec(vector_tensor): | |
| return vector_tensor.data.cpu().numpy()[:, :, 0, 0] | |
| def voc_ap(rec, prec, use_07_metric=False): | |
| """ ap = voc_ap(rec, prec, [use_07_metric]) | |
| Compute VOC AP given precision and recall. | |
| If use_07_metric is true, uses the | |
| VOC 07 11 point method (default:False). | |
| """ | |
| if use_07_metric: | |
| # 11 point metric | |
| ap = 0. | |
| for t in np.arange(0., 1.1, 0.1): | |
| if np.sum(rec >= t) == 0: | |
| p = 0 | |
| else: | |
| p = np.max(prec[rec >= t]) | |
| ap = ap + p / 11. | |
| else: | |
| # correct AP calculation | |
| # first append sentinel values at the end | |
| mrec = np.concatenate(([0.], rec, [1.])) | |
| mpre = np.concatenate(([0.], prec, [0.])) | |
| # compute the precision envelope | |
| for i in range(mpre.size - 1, 0, -1): | |
| mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) | |
| # to calculate area under PR curve, look for points | |
| # where X axis (recall) changes value | |
| i = np.where(mrec[1:] != mrec[:-1])[0] | |
| # and sum (\Delta recall) * prec | |
| ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) | |
| return ap | |
| def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): | |
| # def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): | |
| image_numpy = image_tensor[0].cpu().float().numpy() | |
| image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor | |
| return image_numpy.astype(imtype) | |
| def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): | |
| # def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): | |
| return torch.Tensor((image / factor - cent) | |
| [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) | |