Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import json | |
| import os | |
| from datetime import datetime, timezone | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.display.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| FAQ_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| NUMERIC_INTERVALS, | |
| TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| from src.submission.check_validity import already_submitted_models | |
| from src.tools.collections import update_collections | |
| from src.tools.plots import ( | |
| create_metric_plot_obj, | |
| create_plot_df, | |
| create_scores_df, | |
| ) | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
| ) | |
| except Exception: | |
| restart_space() | |
| raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| update_collections(original_df.copy()) | |
| leaderboard_df = original_df.copy() | |
| plot_df = create_plot_df(create_scores_df(raw_data)) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| # Searching and filtering | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| type_query: list, | |
| precision_query: str, | |
| size_query: list, | |
| show_deleted: bool, | |
| query: str, | |
| ): | |
| filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
| filtered_df = filter_queries(query, filtered_df) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| AutoEvalColumn.model_type_symbol.name, | |
| AutoEvalColumn.model.name, | |
| ] | |
| # We use COLS to maintain sorting | |
| filtered_df = df[ | |
| always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
| ] | |
| return filtered_df | |
| def filter_queries(query: str, filtered_df: pd.DataFrame): | |
| """Added by Abishek""" | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
| ) | |
| return filtered_df | |
| def filter_models( | |
| df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool | |
| ) -> pd.DataFrame: | |
| # Show all models | |
| if show_deleted: | |
| filtered_df = df | |
| else: # Show only still on the hub models | |
| filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
| type_emoji = [t[0] for t in type_query] | |
| filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
| filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
| numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
| params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
| mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
| filtered_df = filtered_df.loc[mask] | |
| return filtered_df | |
| # demo = gr.Blocks(css=custom_css) | |
| # with demo: | |
| # gr.HTML(TITLE) | |
| # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| # | |
| # with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # with gr.Row(): | |
| # search_bar = gr.Textbox( | |
| # placeholder=" π Search for your model and press ENTER...", | |
| # show_label=False, | |
| # elem_id="search-bar", | |
| # ) | |
| # with gr.Row(): | |
| # shown_columns = gr.CheckboxGroup( | |
| # choices=[ | |
| # c | |
| # for c in COLS | |
| # if c | |
| # not in [ | |
| # AutoEvalColumn.dummy.name, | |
| # AutoEvalColumn.model.name, | |
| # AutoEvalColumn.model_type_symbol.name, | |
| # AutoEvalColumn.still_on_hub.name, | |
| # ] | |
| # ], | |
| # value=[ | |
| # c | |
| # for c in COLS_LITE | |
| # if c | |
| # not in [ | |
| # AutoEvalColumn.dummy.name, | |
| # AutoEvalColumn.model.name, | |
| # AutoEvalColumn.model_type_symbol.name, | |
| # AutoEvalColumn.still_on_hub.name, | |
| # ] | |
| # ], | |
| # label="Select columns to show", | |
| # elem_id="column-select", | |
| # interactive=True, | |
| # ) | |
| # with gr.Row(): | |
| # deleted_models_visibility = gr.Checkbox( | |
| # value=True, label="Show gated/private/deleted models", interactive=True | |
| # ) | |
| # with gr.Column(min_width=320): | |
| # with gr.Box(elem_id="box-filter"): | |
| # filter_columns_type = gr.CheckboxGroup( | |
| # label="Model types", | |
| # choices=[ | |
| # ModelType.PT.to_str(), | |
| # ModelType.FT.to_str(), | |
| # ModelType.IFT.to_str(), | |
| # ModelType.RL.to_str(), | |
| # ], | |
| # value=[ | |
| # ModelType.PT.to_str(), | |
| # ModelType.FT.to_str(), | |
| # ModelType.IFT.to_str(), | |
| # ModelType.RL.to_str(), | |
| # ], | |
| # interactive=True, | |
| # elem_id="filter-columns-type", | |
| # ) | |
| # filter_columns_precision = gr.CheckboxGroup( | |
| # label="Precision", | |
| # choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"], | |
| # value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"], | |
| # interactive=True, | |
| # elem_id="filter-columns-precision", | |
| # ) | |
| # filter_columns_size = gr.CheckboxGroup( | |
| # label="Model sizes", | |
| # choices=list(NUMERIC_INTERVALS.keys()), | |
| # value=list(NUMERIC_INTERVALS.keys()), | |
| # interactive=True, | |
| # elem_id="filter-columns-size", | |
| # ) | |
| # | |
| # leaderboard_table = gr.components.Dataframe( | |
| # value=leaderboard_df[ | |
| # [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] | |
| # + shown_columns.value | |
| # + [AutoEvalColumn.dummy.name] | |
| # ], | |
| # headers=[ | |
| # AutoEvalColumn.model_type_symbol.name, | |
| # AutoEvalColumn.model.name, | |
| # ] | |
| # + shown_columns.value | |
| # + [AutoEvalColumn.dummy.name], | |
| # datatype=TYPES, | |
| # max_rows=None, | |
| # elem_id="leaderboard-table", | |
| # interactive=False, | |
| # visible=True, | |
| # ) | |
| # | |
| # # Dummy leaderboard for handling the case when the user uses backspace key | |
| # hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| # value=original_df, | |
| # headers=COLS, | |
| # datatype=TYPES, | |
| # max_rows=None, | |
| # visible=False, | |
| # ) | |
| # search_bar.submit( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # leaderboard_table, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # ) | |
| # shown_columns.change( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # leaderboard_table, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # queue=True, | |
| # ) | |
| # filter_columns_type.change( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # leaderboard_table, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # queue=True, | |
| # ) | |
| # filter_columns_precision.change( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # leaderboard_table, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # queue=True, | |
| # ) | |
| # filter_columns_size.change( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # leaderboard_table, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # queue=True, | |
| # ) | |
| # deleted_models_visibility.change( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # leaderboard_table, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # queue=True, | |
| # ) | |
| # with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
| # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| # | |
| # with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| # with gr.Column(): | |
| # with gr.Row(): | |
| # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| # | |
| # with gr.Column(): | |
| # with gr.Accordion( | |
| # f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
| # open=False, | |
| # ): | |
| # with gr.Row(): | |
| # finished_eval_table = gr.components.Dataframe( | |
| # value=finished_eval_queue_df, | |
| # headers=EVAL_COLS, | |
| # datatype=EVAL_TYPES, | |
| # max_rows=5, | |
| # ) | |
| # with gr.Accordion( | |
| # f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| # open=False, | |
| # ): | |
| # with gr.Row(): | |
| # running_eval_table = gr.components.Dataframe( | |
| # value=running_eval_queue_df, | |
| # headers=EVAL_COLS, | |
| # datatype=EVAL_TYPES, | |
| # max_rows=5, | |
| # ) | |
| # | |
| # with gr.Accordion( | |
| # f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| # open=False, | |
| # ): | |
| # with gr.Row(): | |
| # pending_eval_table = gr.components.Dataframe( | |
| # value=pending_eval_queue_df, | |
| # headers=EVAL_COLS, | |
| # datatype=EVAL_TYPES, | |
| # max_rows=5, | |
| # ) | |
| # with gr.Row(): | |
| # gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
| # | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # model_name_textbox = gr.Textbox(label="Model name") | |
| # revision_name_textbox = gr.Textbox(label="revision", placeholder="main") | |
| # private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
| # model_type = gr.Dropdown( | |
| # choices=[ | |
| # ModelType.PT.to_str(" : "), | |
| # ModelType.FT.to_str(" : "), | |
| # ModelType.IFT.to_str(" : "), | |
| # ModelType.RL.to_str(" : "), | |
| # ], | |
| # label="Model type", | |
| # multiselect=False, | |
| # value=None, | |
| # interactive=True, | |
| # ) | |
| # | |
| # with gr.Column(): | |
| # precision = gr.Dropdown( | |
| # choices=[ | |
| # "float16", | |
| # "bfloat16", | |
| # "8bit (LLM.int8)", | |
| # "4bit (QLoRA / FP4)", | |
| # "GPTQ" | |
| # ], | |
| # label="Precision", | |
| # multiselect=False, | |
| # value="float16", | |
| # interactive=True, | |
| # ) | |
| # weight_type = gr.Dropdown( | |
| # choices=["Original", "Delta", "Adapter"], | |
| # label="Weights type", | |
| # multiselect=False, | |
| # value="Original", | |
| # interactive=True, | |
| # ) | |
| # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| # | |
| # submit_button = gr.Button("Submit Eval") | |
| # submission_result = gr.Markdown() | |
| # submit_button.click( | |
| # add_new_eval, | |
| # [ | |
| # model_name_textbox, | |
| # base_model_name_textbox, | |
| # revision_name_textbox, | |
| # precision, | |
| # private, | |
| # weight_type, | |
| # model_type, | |
| # ], | |
| # submission_result, | |
| # ) | |
| # | |
| # with gr.Row(): | |
| # with gr.Accordion("π Citation", open=False): | |
| # citation_button = gr.Textbox( | |
| # value=CITATION_BUTTON_TEXT, | |
| # label=CITATION_BUTTON_LABEL, | |
| # elem_id="citation-button", | |
| # ).style(show_copy_button=True) | |
| # | |
| # dummy = gr.Textbox(visible=False) | |
| # demo.load( | |
| # change_tab, | |
| # dummy, | |
| # tabs, | |
| # _js=get_window_url_params, | |
| # ) | |
| dummy1 = gr.Textbox(visible=False) | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False | |
| ) | |
| def display(x, y): | |
| return original_df | |
| INTRODUCTION_TEXT = """ | |
| This is a copied space from Open Source LLM leaderboard. Instead of displaying | |
| the results as table the space simply provides a gradio API interface to access | |
| the full leaderboard data easily. | |
| Example python on how to access the data: | |
| ```python | |
| from gradio_client import Client | |
| import json | |
| client = Client("https://felixz-open-llm-leaderboard.hf.space/") | |
| json_data = client.predict("","", api_name='/predict') | |
| with open(json_data, 'r') as file: | |
| file_data = file.read() | |
| # Load the JSON data | |
| data = json.loads(file_data) | |
| # Get the headers and the data | |
| headers = data['headers'] | |
| data = data['data'] | |
| ``` | |
| """ | |
| interface = gr.Interface( | |
| fn=display, | |
| inputs=[ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), | |
| dummy1 | |
| ], | |
| outputs=[hidden_leaderboard_table_for_search] | |
| ) | |
| # Client auth error.. need to see how this works. | |
| #scheduler = BackgroundScheduler() | |
| #scheduler.add_job(restart_space, "interval", seconds=21600) | |
| #scheduler.start() | |
| interface.launch() | |
| #demo.queue(concurrency_count=40).launch() | |