Primeiro commit
Browse files- __pycache__/stocks.cpython-311.pyc +0 -0
- app.py +244 -0
- requirements.txt +12 -0
- stocks.py +668 -0
__pycache__/stocks.cpython-311.pyc
ADDED
|
Binary file (35.8 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from datetime import datetime, timedelta
|
| 3 |
+
import stocks as st
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class GradioInterface:
|
| 7 |
+
def __init__(self, pipeline):
|
| 8 |
+
self.pipeline = pipeline
|
| 9 |
+
self.strategy_params = {
|
| 10 |
+
'rsi_period': 14,
|
| 11 |
+
'rsi_upper': 70,
|
| 12 |
+
'rsi_lower': 30,
|
| 13 |
+
'sma_short': 50,
|
| 14 |
+
'sma_long': 200,
|
| 15 |
+
'max_loss_percent': 0.02,
|
| 16 |
+
'take_profit_percent': 0.05,
|
| 17 |
+
'position_size': 0.1,
|
| 18 |
+
'atr_period': 14,
|
| 19 |
+
'atr_multiplier': 3,
|
| 20 |
+
'confidence_threshold' : 0.7,
|
| 21 |
+
'sentiment_threshold' : 0.5
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def create_settings_interface(self):
|
| 25 |
+
with gr.Blocks() as settings_interface:
|
| 26 |
+
with gr.Row():
|
| 27 |
+
with gr.Column():
|
| 28 |
+
# Parâmetros da Estratégia de Trading
|
| 29 |
+
gr.Markdown("### Parâmetros da Estratégia de Trading")
|
| 30 |
+
inputs = {}
|
| 31 |
+
inputs['rsi_period'] = gr.Number(value=14, label="Período RSI")
|
| 32 |
+
inputs['rsi_upper'] = gr.Number(value=70, label="Limite Superior RSI", minimum=0, maximum=100)
|
| 33 |
+
inputs['rsi_lower'] = gr.Number(value=30, label="Limite Inferior RSI", minimum=0, maximum=100)
|
| 34 |
+
inputs['sma_short'] = gr.Number(value=50, label="SMA Curta (período)")
|
| 35 |
+
inputs['sma_long'] = gr.Number(value=200, label="SMA Longa (período)")
|
| 36 |
+
inputs['max_loss_percent'] = gr.Slider(0, 0.5, value=0.02, step=0.01, label="Stop Loss (%)")
|
| 37 |
+
inputs['take_profit_percent'] = gr.Slider(0, 0.5, value=0.05, step=0.01, label="Take Profit (%)")
|
| 38 |
+
inputs['position_size'] = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="Tamanho da Posição (%)")
|
| 39 |
+
inputs['atr_period'] = gr.Number(value=14, label="Período ATR")
|
| 40 |
+
inputs['atr_multiplier'] = gr.Number(value=3, label="Multiplicador ATR")
|
| 41 |
+
inputs['confidence_threshold'] = gr.Number(value=70, label="Nível de Confiança Mínima (%)", minimum=0, maximum=100)
|
| 42 |
+
inputs['sentiment_threshold'] = gr.Number(value=50, label="Nível Sentimento Mínimo (%)", minimum=0, maximum=100)
|
| 43 |
+
save_btn = gr.Button("Salvar Configurações")
|
| 44 |
+
# Adicionando a explicação em Markdown
|
| 45 |
+
gr.Markdown("""
|
| 46 |
+
## 📊 Explicação dos Parâmetros da Estratégia de Trading
|
| 47 |
+
|
| 48 |
+
Esses parâmetros configuram indicadores técnicos para ajudar na decisão de compra e venda de ativos.
|
| 49 |
+
|
| 50 |
+
### **📉 RSI (Relative Strength Index)**
|
| 51 |
+
O RSI é usado para medir a força do movimento de um ativo.
|
| 52 |
+
|
| 53 |
+
- **`rsi_period` (14)** → Número de períodos para calcular o RSI (padrão: 14).
|
| 54 |
+
- **`rsi_upper` (70)** → Se o RSI for maior que esse valor, pode indicar sobrecompra (sinal de venda).
|
| 55 |
+
- **`rsi_lower` (30)** → Se o RSI for menor que esse valor, pode indicar sobrevenda (sinal de compra).
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
### **📈 Médias Móveis Simples (SMA - Simple Moving Average)**
|
| 60 |
+
Indicadores que suavizam os preços ao longo do tempo.
|
| 61 |
+
|
| 62 |
+
- **`sma_short` (50)** → Média móvel curta, usada para capturar tendências de curto prazo.
|
| 63 |
+
- **`sma_long` (200)** → Média móvel longa, usada para capturar tendências de longo prazo.
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
### **📉 Gestão de Risco**
|
| 68 |
+
|
| 69 |
+
- **`max_loss_percent` (0.02)** → Stop Loss (limite de perda). Se o preço cair mais que 2%, a posição é fechada.
|
| 70 |
+
- **`take_profit_percent` (0.05)** → Take Profit (limite de lucro). Se o preço subir 5%, a posição é fechada.
|
| 71 |
+
- **`position_size` (0.1)** → Proporção do capital total que será usado em uma operação (10% do saldo).
|
| 72 |
+
|
| 73 |
+
---
|
| 74 |
+
|
| 75 |
+
### **📊 ATR (Average True Range) - Volatilidade**
|
| 76 |
+
O ATR é usado para medir a volatilidade do ativo.
|
| 77 |
+
|
| 78 |
+
- **`atr_period` (14)** → Número de períodos para calcular o ATR.
|
| 79 |
+
- **`atr_multiplier` (3)** → Multiplicador do ATR, geralmente usado para definir stop loss dinâmico.
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
|
| 83 |
+
## **🚀 Como esses parâmetros afetam a estratégia?**
|
| 84 |
+
|
| 85 |
+
- **Se `rsi_lower` for menor (ex: 20), a estratégia comprará em regiões mais sobrevendidas.**
|
| 86 |
+
- **Se `max_loss_percent` for muito pequeno, pode fechar trades prematuramente.**
|
| 87 |
+
- **Se `atr_multiplier` for maior, o stop loss será mais amplo e permitirá mais volatilidade.**
|
| 88 |
+
- **Se `sma_short` e `sma_long` estiverem distantes, as entradas serão mais conservadoras.**
|
| 89 |
+
|
| 90 |
+
Se precisar ajustar os valores para um backtest, posso sugerir otimizações! 🚀
|
| 91 |
+
""")
|
| 92 |
+
|
| 93 |
+
save_btn.click(
|
| 94 |
+
self.save_settings,
|
| 95 |
+
inputs=[v for v in inputs.values()],
|
| 96 |
+
outputs=None
|
| 97 |
+
)
|
| 98 |
+
return settings_interface
|
| 99 |
+
|
| 100 |
+
def save_settings(self, *args):
|
| 101 |
+
params = [
|
| 102 |
+
'rsi_period', 'rsi_upper', 'rsi_lower',
|
| 103 |
+
'sma_short', 'sma_long', 'max_loss_percent',
|
| 104 |
+
'take_profit_percent', 'position_size',
|
| 105 |
+
'atr_period', 'atr_multiplier', 'confidence_threshold', 'sentiment_threshold'
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
self.strategy_params = dict(zip(params, args))
|
| 109 |
+
print("Parâmetros atualizados:", self.strategy_params)
|
| 110 |
+
return gr.Info("Configurações salvas com sucesso!")
|
| 111 |
+
|
| 112 |
+
def create_main_interface(self):
|
| 113 |
+
with gr.Blocks() as main_interface:
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column():
|
| 116 |
+
ticker_input = gr.Text(label="Ticker (ex: AAPL)")
|
| 117 |
+
api_key_input = gr.Textbox(label="API Key (opcional)", placeholder="Insira sua API Key https://newsapi.org/")
|
| 118 |
+
fetch_new = gr.Dropdown([True, False], label="Buscar noticias online?", value=False)
|
| 119 |
+
initial_investment = gr.Number(10000, label="Investimento Inicial (USD)")
|
| 120 |
+
years_back = gr.Number(5, label="Período Histórico (anos)")
|
| 121 |
+
commission = gr.Number(0.001, label="Comissão por Trade")
|
| 122 |
+
run_btn = gr.Button("Executar Análise e Simulação")
|
| 123 |
+
with gr.Column():
|
| 124 |
+
plot_output = gr.Plot()
|
| 125 |
+
with gr.Row():
|
| 126 |
+
# Adicionar uma saída para os resultados
|
| 127 |
+
output_md = gr.Markdown()
|
| 128 |
+
|
| 129 |
+
run_btn.click(
|
| 130 |
+
self.run_full_analysis,
|
| 131 |
+
inputs=[ticker_input, fetch_new, initial_investment, years_back, commission, api_key_input],
|
| 132 |
+
outputs=[output_md, plot_output]
|
| 133 |
+
)
|
| 134 |
+
return main_interface
|
| 135 |
+
|
| 136 |
+
def run_full_analysis(self, ticker, fetch_new, initial_investment, years_back, commission, api_key):
|
| 137 |
+
# Atualizar os parâmetros da pipeline
|
| 138 |
+
self.pipeline.set_sentiment_threshold(float(self.strategy_params['sentiment_threshold'])/100)
|
| 139 |
+
self.pipeline.set_confidence_threshold(float(self.strategy_params['confidence_threshold'])/100)
|
| 140 |
+
|
| 141 |
+
# Executar análise
|
| 142 |
+
result = self.pipeline.analyze_company(
|
| 143 |
+
ticker=ticker,
|
| 144 |
+
news_api_key=api_key,
|
| 145 |
+
fetch_new=fetch_new
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
if not result:
|
| 149 |
+
return "Erro na análise", None
|
| 150 |
+
|
| 151 |
+
# Configurar simulação
|
| 152 |
+
end_date = datetime.now()
|
| 153 |
+
start_date = end_date - timedelta(days=int(years_back*365))
|
| 154 |
+
|
| 155 |
+
# Criar estratégia personalizada com os parâmetros
|
| 156 |
+
custom_strategy_params = {
|
| 157 |
+
'rsi_period': int(self.strategy_params['rsi_period']),
|
| 158 |
+
'rsi_upper': int(self.strategy_params['rsi_upper']),
|
| 159 |
+
'rsi_lower': int(self.strategy_params['rsi_lower']),
|
| 160 |
+
'sma_short': int(self.strategy_params['sma_short']),
|
| 161 |
+
'sma_long': int(self.strategy_params['sma_long']),
|
| 162 |
+
'max_loss_percent': float(self.strategy_params['max_loss_percent']),
|
| 163 |
+
'take_profit_percent': float(self.strategy_params['take_profit_percent']),
|
| 164 |
+
'position_size': float(self.strategy_params['position_size']),
|
| 165 |
+
'atr_period': int(self.strategy_params['atr_period']),
|
| 166 |
+
'atr_multiplier': int(self.strategy_params['atr_multiplier']),
|
| 167 |
+
'confidence_threshold' : float(self.strategy_params['confidence_threshold'])/100,
|
| 168 |
+
'sentiment_threshold' : float(self.strategy_params['sentiment_threshold'])/100
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
# Criar uma instância de Progress
|
| 172 |
+
progress = gr.Progress()
|
| 173 |
+
|
| 174 |
+
# Atualizar progresso
|
| 175 |
+
progress(0.3, desc="Preparando simulação...")
|
| 176 |
+
|
| 177 |
+
# Executar simulação
|
| 178 |
+
bt_integration = st.BacktraderIntegration(analysis_result=result,strategy_params=custom_strategy_params)
|
| 179 |
+
bt_integration.add_data_feed(ticker, start_date, end_date)
|
| 180 |
+
|
| 181 |
+
progress(0.6, desc="Executando simulação...")
|
| 182 |
+
|
| 183 |
+
final_value = bt_integration.run_simulation(
|
| 184 |
+
initial_cash=initial_investment,
|
| 185 |
+
commission=commission
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
progress(0.9, desc="Gerando resultados...")
|
| 189 |
+
|
| 190 |
+
# Extrair os valores do JSON de sentimento
|
| 191 |
+
sentiment = result['sentiment']['sentiment']
|
| 192 |
+
negative_sentiment = sentiment.get('negativo', 0.0)
|
| 193 |
+
neutral_sentiment = sentiment.get('neutral', 0.0)
|
| 194 |
+
positive_sentiment = sentiment.get('positive', 0.0)
|
| 195 |
+
|
| 196 |
+
# Gerar saída formatada em Markdown
|
| 197 |
+
output = f"""
|
| 198 |
+
## Recomendação: {result['recommendation']}
|
| 199 |
+
|
| 200 |
+
**Confiança**: {result['confidence']['total_confidence']:.2%}
|
| 201 |
+
**Retorno da Simulação**: {(final_value/initial_investment-1)*100:.2f}%
|
| 202 |
+
|
| 203 |
+
### Detalhes:
|
| 204 |
+
|
| 205 |
+
- **Sentimento Negativo**: {negative_sentiment:.2%}
|
| 206 |
+
- **Sentimento Neutro**: {neutral_sentiment:.2%}
|
| 207 |
+
- **Sentimento Positivo**: {positive_sentiment:.2%}
|
| 208 |
+
|
| 209 |
+
- **RSI**: {result['technical']['rsi']:.1f}
|
| 210 |
+
- **Preço vs SMA50**: {result['technical']['price_vs_sma']:.2%}
|
| 211 |
+
- **P/E Ratio**: {result['fundamental'].get('trailingPE', 'N/A')}
|
| 212 |
+
"""
|
| 213 |
+
# Gerar gráfico simples (exemplo)
|
| 214 |
+
plot = self.generate_simple_plot(bt_integration)
|
| 215 |
+
|
| 216 |
+
return output, plot
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def generate_simple_plot(self, bt_integration):
|
| 220 |
+
# Implemente aqui a geração do gráfico usando matplotlib
|
| 221 |
+
import matplotlib.pyplot as plt
|
| 222 |
+
|
| 223 |
+
plt.figure(figsize=(10, 6))
|
| 224 |
+
# Exemplo: Plotar preço de fechamento
|
| 225 |
+
data = bt_integration.cerebro.datas[0].close.array
|
| 226 |
+
plt.plot(data, label='Preço')
|
| 227 |
+
plt.title("Desempenho Histórico")
|
| 228 |
+
plt.legend()
|
| 229 |
+
return plt.gcf()
|
| 230 |
+
|
| 231 |
+
# Configuração da interface completa
|
| 232 |
+
pipeline = st.AnalysisPipeline()
|
| 233 |
+
|
| 234 |
+
interface = GradioInterface(pipeline)
|
| 235 |
+
|
| 236 |
+
demo = gr.TabbedInterface(
|
| 237 |
+
[interface.create_main_interface(), interface.create_settings_interface()],
|
| 238 |
+
["Análise Principal", "Configurações da Estratégia"],
|
| 239 |
+
title="Stock Analyst Pro"
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
if __name__ == "__main__":
|
| 243 |
+
#demo.launch(share=True)
|
| 244 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.0.0
|
| 2 |
+
matplotlib>=3.0.0
|
| 3 |
+
pandas>=1.0.0
|
| 4 |
+
numpy>=1.0.0
|
| 5 |
+
backtrader>=1.9.0
|
| 6 |
+
requests>=2.0.0
|
| 7 |
+
python-dateutil>=2.8.0
|
| 8 |
+
yfinance>=0.2.0
|
| 9 |
+
torch>=1.0.0
|
| 10 |
+
transformers>=4.0.0
|
| 11 |
+
sqlalchemy>=1.4.0
|
| 12 |
+
newsapi-python>=0.1.6
|
stocks.py
ADDED
|
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yfinance as yf
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import json
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
+
from sqlalchemy import create_engine, Column, Integer, String, JSON
|
| 9 |
+
from sqlalchemy.ext.declarative import declarative_base
|
| 10 |
+
from sqlalchemy.orm import sessionmaker
|
| 11 |
+
from newsapi import NewsApiClient
|
| 12 |
+
from functools import lru_cache
|
| 13 |
+
|
| 14 |
+
import backtrader as bt
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# 1. Configuração do Banco de Dados (FORA de qualquer classe)
|
| 18 |
+
Base = declarative_base()
|
| 19 |
+
engine = create_engine('sqlite:///financial_data.db')
|
| 20 |
+
Session = sessionmaker(bind=engine)
|
| 21 |
+
|
| 22 |
+
# 2. Modelo de Dados (usa a Base declarada acima)
|
| 23 |
+
class CompanyData(Base):
|
| 24 |
+
__tablename__ = 'company_data'
|
| 25 |
+
id = Column(Integer, primary_key=True)
|
| 26 |
+
ticker = Column(String)
|
| 27 |
+
data_type = Column(String)
|
| 28 |
+
data = Column(JSON)
|
| 29 |
+
date = Column(String)
|
| 30 |
+
|
| 31 |
+
# 3. Criar tabelas (após definir todos os modelos)
|
| 32 |
+
Base.metadata.create_all(engine)
|
| 33 |
+
|
| 34 |
+
# 4. Class for Financial Analyst
|
| 35 |
+
class FinancialAnalyst:
|
| 36 |
+
def __init__(self):
|
| 37 |
+
self.models = {}
|
| 38 |
+
self.tokenizers = {}
|
| 39 |
+
# 2. LM Models for Financial Analysis
|
| 40 |
+
FINANCIAL_MODELS = {
|
| 41 |
+
'finbert': {
|
| 42 |
+
'model': "ProsusAI/finbert",
|
| 43 |
+
'tokenizer': "ProsusAI/finbert"
|
| 44 |
+
},
|
| 45 |
+
'financial_sentiment': {
|
| 46 |
+
'model': "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
|
| 47 |
+
'tokenizer': "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
| 48 |
+
}
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
for name, config in FINANCIAL_MODELS.items():
|
| 52 |
+
try:
|
| 53 |
+
self.tokenizers[name] = AutoTokenizer.from_pretrained(config['tokenizer'])
|
| 54 |
+
# Use cache to avoid downloading the model multiple times
|
| 55 |
+
self.models[name] = self._load_model(config['model'])
|
| 56 |
+
print(f"Model {name} loaded successfully")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error loading model {name}: {e}")
|
| 59 |
+
if name == 'financial_sentiment':
|
| 60 |
+
print("Using FinBERT as the fallback for financial sentiment analysis")
|
| 61 |
+
self.models[name] = self.models['finbert']
|
| 62 |
+
self.tokenizers[name] = self.tokenizers['finbert']
|
| 63 |
+
|
| 64 |
+
@lru_cache(maxsize=2) # Cache for 2 models
|
| 65 |
+
def _load_model(self, model_name):
|
| 66 |
+
return AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 67 |
+
|
| 68 |
+
# 4. Method for saving data in the database
|
| 69 |
+
def save_data(ticker, data_type, data):
|
| 70 |
+
session = Session()
|
| 71 |
+
try:
|
| 72 |
+
new_entry = CompanyData(
|
| 73 |
+
ticker=ticker,
|
| 74 |
+
data_type=data_type,
|
| 75 |
+
data=data,
|
| 76 |
+
date=datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
| 77 |
+
)
|
| 78 |
+
session.add(new_entry)
|
| 79 |
+
session.commit()
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"Error to save data in the database: {e}")
|
| 82 |
+
finally:
|
| 83 |
+
session.close()
|
| 84 |
+
# 4.1 Method for getting historical data from the database
|
| 85 |
+
def get_historical_data(ticker):
|
| 86 |
+
session = Session()
|
| 87 |
+
try:
|
| 88 |
+
financials = session.query(CompanyData).filter(
|
| 89 |
+
CompanyData.ticker == ticker,
|
| 90 |
+
CompanyData.data_type == 'financials'
|
| 91 |
+
).order_by(CompanyData.date.desc()).first()
|
| 92 |
+
|
| 93 |
+
news = session.query(CompanyData).filter(
|
| 94 |
+
CompanyData.ticker == ticker,
|
| 95 |
+
CompanyData.data_type == 'news'
|
| 96 |
+
).order_by(CompanyData.date.desc()).all()
|
| 97 |
+
|
| 98 |
+
return {
|
| 99 |
+
'financials': financials.data if financials else None,
|
| 100 |
+
'news': [n.data for n in news]
|
| 101 |
+
}
|
| 102 |
+
finally:
|
| 103 |
+
session.close()
|
| 104 |
+
|
| 105 |
+
# 5. Technical Analysis
|
| 106 |
+
def calculate_rsi(data, window=14):
|
| 107 |
+
delta = data['Close'].diff()
|
| 108 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
| 109 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
| 110 |
+
rs = gain / loss
|
| 111 |
+
rsi = 100 - (100 / (1 + rs))
|
| 112 |
+
return rsi.iloc[-1]
|
| 113 |
+
|
| 114 |
+
# 5.1 Technical Analysis
|
| 115 |
+
def technical_analysis(ticker):
|
| 116 |
+
try:
|
| 117 |
+
# Colecting data from Yahoo Finance
|
| 118 |
+
data = yf.download(ticker, period="6mo", progress=False)
|
| 119 |
+
|
| 120 |
+
# Check if there is enough data
|
| 121 |
+
if data.empty or data.shape[0] < 50: # At least 50 days of data
|
| 122 |
+
print(f"Insuficient data for {ticker}")
|
| 123 |
+
return None
|
| 124 |
+
|
| 125 |
+
# Remove missing values
|
| 126 |
+
data = data.dropna()
|
| 127 |
+
|
| 128 |
+
# Calculate SMA50
|
| 129 |
+
sma_50 = data['Close'].rolling(50).mean().iloc[-1].item()
|
| 130 |
+
current_price = data['Close'].iloc[-1].item()
|
| 131 |
+
|
| 132 |
+
# Calculate RSI
|
| 133 |
+
delta = data['Close'].diff().dropna()
|
| 134 |
+
gain = delta.where(delta > 0, 0.0)
|
| 135 |
+
loss = -delta.where(delta < 0, 0.0)
|
| 136 |
+
|
| 137 |
+
avg_gain = gain.rolling(14).mean()
|
| 138 |
+
avg_loss = loss.rolling(14).mean()
|
| 139 |
+
|
| 140 |
+
rs = avg_gain / avg_loss
|
| 141 |
+
rsi = (100 - (100 / (1 + rs))).iloc[-1].item()
|
| 142 |
+
|
| 143 |
+
return {
|
| 144 |
+
'price': current_price,
|
| 145 |
+
'sma_50': sma_50,
|
| 146 |
+
'price_vs_sma': (current_price / sma_50) - 1,
|
| 147 |
+
'rsi': rsi if not np.isnan(rsi) else 50,
|
| 148 |
+
'trend': 'bullish' if current_price > sma_50 else 'bearish'
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"Error in the thecnical analysis: {e}")
|
| 153 |
+
return None
|
| 154 |
+
|
| 155 |
+
# 6. Confidence Calculator
|
| 156 |
+
class ConfidenceCalculator:
|
| 157 |
+
def __init__(self):
|
| 158 |
+
self.weights = {
|
| 159 |
+
'sentiment': 0.4,
|
| 160 |
+
'technical': 0.3,
|
| 161 |
+
'fundamental': 0.3
|
| 162 |
+
}
|
| 163 |
+
# 6.1 Method for calculating the confidence
|
| 164 |
+
def calculate(self, sentiment, technical, fundamental):
|
| 165 |
+
sentiment_score = sentiment['confidence']
|
| 166 |
+
technical_score = self._normalize_technical(technical)
|
| 167 |
+
fundamental_score = self._normalize_fundamental(fundamental)
|
| 168 |
+
|
| 169 |
+
weighted_score = (
|
| 170 |
+
sentiment_score * self.weights['sentiment'] +
|
| 171 |
+
technical_score * self.weights['technical'] +
|
| 172 |
+
fundamental_score * self.weights['fundamental']
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return {
|
| 176 |
+
'total_confidence': weighted_score,
|
| 177 |
+
'components': {
|
| 178 |
+
'sentiment': sentiment_score,
|
| 179 |
+
'technical': technical_score,
|
| 180 |
+
'fundamental': fundamental_score
|
| 181 |
+
}
|
| 182 |
+
}
|
| 183 |
+
# 6.2 Method for normalizing the technical analysis
|
| 184 |
+
def _normalize_technical(self, tech):
|
| 185 |
+
if tech is None:
|
| 186 |
+
return 0.5
|
| 187 |
+
rsi_score = 1 - abs(tech['rsi'] - 50)/50
|
| 188 |
+
price_score = np.tanh(tech['price_vs_sma'] * 100)
|
| 189 |
+
return 0.6*rsi_score + 0.4*price_score
|
| 190 |
+
# 6.3 Method for normalizing the fundamental analysis
|
| 191 |
+
def _normalize_fundamental(self, fund):
|
| 192 |
+
if not fund:
|
| 193 |
+
return 0.5
|
| 194 |
+
|
| 195 |
+
pe_ratio = fund.get('pe_ratio', 0)
|
| 196 |
+
sector_pe = fund.get('sector_pe')
|
| 197 |
+
revenue_growth = fund.get('revenue_growth', 0)
|
| 198 |
+
|
| 199 |
+
# Tratar casos onde sector_pe é None
|
| 200 |
+
if sector_pe is None:
|
| 201 |
+
pe_score = 0.5 # Pontuação neutra
|
| 202 |
+
else:
|
| 203 |
+
pe_score = 1 if pe_ratio < sector_pe else 0.5
|
| 204 |
+
|
| 205 |
+
growth_score = min(revenue_growth / 20, 1)
|
| 206 |
+
|
| 207 |
+
return 0.5 * pe_score + 0.5 * growth_score
|
| 208 |
+
|
| 209 |
+
# 7. Analysis Pipeline
|
| 210 |
+
class AnalysisPipeline:
|
| 211 |
+
def __init__(self, sentiment_threshold=0.6, confidence_threshold=0.7):
|
| 212 |
+
self.analyst = FinancialAnalyst()
|
| 213 |
+
self.confidence_calc = ConfidenceCalculator()
|
| 214 |
+
self.sentiment_threshold = sentiment_threshold # Novo parâmetro
|
| 215 |
+
self.confidence_threshold = confidence_threshold # Novo parâmetro
|
| 216 |
+
|
| 217 |
+
def set_sentiment_threshold(self, sentiment_threshold):
|
| 218 |
+
self.sentiment_threshold = sentiment_threshold
|
| 219 |
+
|
| 220 |
+
def set_confidence_threshold(self, confidence_threshold):
|
| 221 |
+
self.confidence_threshold = confidence_threshold
|
| 222 |
+
|
| 223 |
+
# 7.1 Method for getting the fundamental data
|
| 224 |
+
def get_fundamental_data(self, ticker):
|
| 225 |
+
try:
|
| 226 |
+
company = yf.Ticker(ticker)
|
| 227 |
+
info = company.info
|
| 228 |
+
|
| 229 |
+
# ensure that the data is valid
|
| 230 |
+
return {
|
| 231 |
+
'trailingPE': float(info.get('trailingPE', 0)),
|
| 232 |
+
'sectorPE': float(info.get('sectorPE', 0)) if info.get('sectorPE') else None,
|
| 233 |
+
'revenueGrowth': float(info.get('revenueGrowth', 0)),
|
| 234 |
+
'profitMargins': float(info.get('profitMargins', 0)),
|
| 235 |
+
'debtToEquity': float(info.get('debtToEquity', 0))
|
| 236 |
+
}
|
| 237 |
+
except Exception as e:
|
| 238 |
+
print(f"Error while performing the fundamental analysis: {e}")
|
| 239 |
+
return {}
|
| 240 |
+
# 7.2 Method for getting the news
|
| 241 |
+
def get_news(self, ticker, api_key=None, fetch_new=True):
|
| 242 |
+
if fetch_new and api_key:
|
| 243 |
+
try:
|
| 244 |
+
newsapi = NewsApiClient(api_key=api_key)
|
| 245 |
+
from_date = (datetime.now() - timedelta(days=5)).strftime('%Y-%m-%d')
|
| 246 |
+
news = newsapi.get_everything(q=ticker, from_param=from_date, language='en', sort_by='relevancy')
|
| 247 |
+
articles = news['articles']
|
| 248 |
+
save_data(ticker, 'news', articles)
|
| 249 |
+
return articles
|
| 250 |
+
except Exception as e:
|
| 251 |
+
print(f"Error while fetching information online: {e}")
|
| 252 |
+
return self._get_news_from_db(ticker)
|
| 253 |
+
else:
|
| 254 |
+
return self._get_news_from_db(ticker)
|
| 255 |
+
# 7.3 Method for getting the news from the database
|
| 256 |
+
def _get_news_from_db(self, ticker):
|
| 257 |
+
session = Session()
|
| 258 |
+
try:
|
| 259 |
+
news_records = session.query(CompanyData).filter(
|
| 260 |
+
CompanyData.ticker == ticker,
|
| 261 |
+
CompanyData.data_type == 'news'
|
| 262 |
+
).order_by(CompanyData.date.desc()).all()
|
| 263 |
+
|
| 264 |
+
news = []
|
| 265 |
+
for record in news_records:
|
| 266 |
+
if isinstance(record.data, list):
|
| 267 |
+
news.extend(record.data)
|
| 268 |
+
elif isinstance(record.data, dict):
|
| 269 |
+
news.append(record.data)
|
| 270 |
+
return news[-5:] # Últimas 5 notícias
|
| 271 |
+
except Exception as e:
|
| 272 |
+
print(f"Error to fetch information from the local database: {e}")
|
| 273 |
+
return []
|
| 274 |
+
finally:
|
| 275 |
+
session.close()
|
| 276 |
+
# 7.4 Method for analyzing the sentiment
|
| 277 |
+
def analyze_sentiment(self, news):
|
| 278 |
+
try:
|
| 279 |
+
if not news:
|
| 280 |
+
return {
|
| 281 |
+
'sentiment': {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33},
|
| 282 |
+
'confidence': 0.5
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
sentiment_scores = []
|
| 286 |
+
for item in news:
|
| 287 |
+
text = f"{item.get('title', '')} {item.get('description', '')}".strip()
|
| 288 |
+
if not text:
|
| 289 |
+
continue
|
| 290 |
+
|
| 291 |
+
inputs = self.analyst.tokenizers['financial_sentiment'](text, return_tensors="pt", truncation=True, max_length=512)
|
| 292 |
+
outputs = self.analyst.models['financial_sentiment'](**inputs)
|
| 293 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 294 |
+
sentiment_scores.append(probabilities.detach().numpy()[0])
|
| 295 |
+
|
| 296 |
+
if not sentiment_scores:
|
| 297 |
+
return {
|
| 298 |
+
'sentiment': {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33},
|
| 299 |
+
'confidence': 0.5
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
avg_sentiment = np.mean(sentiment_scores, axis=0)
|
| 303 |
+
labels = ["negative", "neutral", "positive"]
|
| 304 |
+
sentiment = {labels[i]: float(avg_sentiment[i]) for i in range(3)}
|
| 305 |
+
|
| 306 |
+
return {
|
| 307 |
+
'sentiment': sentiment,
|
| 308 |
+
'confidence': max(sentiment.values())
|
| 309 |
+
}
|
| 310 |
+
except Exception as e:
|
| 311 |
+
print(f"Error while sentimental analysis: {e}")
|
| 312 |
+
return {
|
| 313 |
+
'sentiment': {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33},
|
| 314 |
+
'confidence': 0.5
|
| 315 |
+
}
|
| 316 |
+
# 7.5 Method for analyzing the company
|
| 317 |
+
def analyze_company(self, ticker, news_api_key=None, fetch_new=True):
|
| 318 |
+
try:
|
| 319 |
+
# Collecting historical data
|
| 320 |
+
fundamental = self.get_fundamental_data(ticker)
|
| 321 |
+
if fetch_new:
|
| 322 |
+
save_data(ticker, 'financials', fundamental)
|
| 323 |
+
|
| 324 |
+
# Collicting news
|
| 325 |
+
news = self.get_news(ticker, news_api_key, fetch_new)
|
| 326 |
+
|
| 327 |
+
# Technical analysis
|
| 328 |
+
technical = technical_analysis(ticker)
|
| 329 |
+
|
| 330 |
+
if not fundamental or not news or technical is None:
|
| 331 |
+
print(f"Insuficient data for: {ticker}")
|
| 332 |
+
return None
|
| 333 |
+
|
| 334 |
+
# Sentiment analysis
|
| 335 |
+
sentiment = self.analyze_sentiment(news)
|
| 336 |
+
|
| 337 |
+
# Confidence calculation
|
| 338 |
+
confidence = self.confidence_calc.calculate(
|
| 339 |
+
sentiment,
|
| 340 |
+
technical,
|
| 341 |
+
self._prepare_fundamental(fundamental)
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
# Generate recommendation
|
| 345 |
+
recommendation = self.generate_recommendation(
|
| 346 |
+
sentiment, technical, fundamental, confidence
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
return {
|
| 350 |
+
'recommendation': recommendation,
|
| 351 |
+
'confidence': confidence,
|
| 352 |
+
'technical': technical,
|
| 353 |
+
'fundamental': fundamental,
|
| 354 |
+
'sentiment': sentiment
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
except Exception as e:
|
| 358 |
+
print(f"Erro na análise: {e}")
|
| 359 |
+
return None
|
| 360 |
+
# 7.6 Method for preparing the fundamental data
|
| 361 |
+
def _prepare_fundamental(self, fundamental):
|
| 362 |
+
return {
|
| 363 |
+
'pe_ratio': fundamental.get('trailingPE', 0),
|
| 364 |
+
'sector_pe': fundamental.get('sectorPE'), # Pode ser None
|
| 365 |
+
'revenue_growth': fundamental.get('revenueGrowth', 0)
|
| 366 |
+
}
|
| 367 |
+
# 7.7 Method for generating the recommendation
|
| 368 |
+
def generate_recommendation(self, sentiment, technical, fundamental, confidence):
|
| 369 |
+
pe_ratio = fundamental.get('trailingPE', 0)
|
| 370 |
+
sector_pe = fundamental.get('sectorPE')
|
| 371 |
+
|
| 372 |
+
# Low confidence condition - NEUTRAL
|
| 373 |
+
if confidence['total_confidence'] < 0.4:
|
| 374 |
+
return 'NEUTRAL'
|
| 375 |
+
|
| 376 |
+
# Rules based on fundamental analysis
|
| 377 |
+
if sector_pe is not None and sector_pe > 0:
|
| 378 |
+
if pe_ratio < sector_pe * 0.7:
|
| 379 |
+
return 'BUY'
|
| 380 |
+
elif pe_ratio > sector_pe * 1.3:
|
| 381 |
+
return 'SELL'
|
| 382 |
+
|
| 383 |
+
# Rules based on sentiment and confidence
|
| 384 |
+
if confidence['total_confidence'] > self.confidence_threshold and sentiment['sentiment']['positive'] > self.sentiment_threshold:
|
| 385 |
+
return 'BUY'
|
| 386 |
+
|
| 387 |
+
# Fallback based on technical analysis
|
| 388 |
+
if technical and 'trend' in technical:
|
| 389 |
+
return 'HOLD' if technical['trend'] == 'bullish' else 'SELL'
|
| 390 |
+
|
| 391 |
+
# Final fallback
|
| 392 |
+
return 'NEUTRAL'
|
| 393 |
+
|
| 394 |
+
class BacktraderIntegration:
|
| 395 |
+
def __init__(self, analysis_result=None, strategy_params=None):
|
| 396 |
+
self.cerebro = bt.Cerebro()
|
| 397 |
+
self.analysis = analysis_result
|
| 398 |
+
self.strategy_params = strategy_params or {}
|
| 399 |
+
self.setup_environment()
|
| 400 |
+
|
| 401 |
+
def setup_environment(self):
|
| 402 |
+
# Basic configuration of the broker
|
| 403 |
+
self.cerebro.broker.setcash(100000.0) # Valor padrão será atualizado
|
| 404 |
+
self.cerebro.broker.setcommission(commission=0.001)
|
| 405 |
+
|
| 406 |
+
# Custom Strategy
|
| 407 |
+
if self.analysis:
|
| 408 |
+
self.cerebro.addstrategy(self.CustomStrategy, analysis=self.analysis, **self.strategy_params)
|
| 409 |
+
else:
|
| 410 |
+
self.cerebro.addstrategy(self.CustomStrategy)
|
| 411 |
+
|
| 412 |
+
def add_data_feed(self, ticker, start_date, end_date):
|
| 413 |
+
# Convert datetime to string
|
| 414 |
+
start_str = start_date.strftime("%Y-%m-%d")
|
| 415 |
+
end_str = end_date.strftime("%Y-%m-%d")
|
| 416 |
+
|
| 417 |
+
# Download data from Yahoo Finance
|
| 418 |
+
df = yf.download(ticker, start=start_str, end=end_str, progress=False)
|
| 419 |
+
|
| 420 |
+
# adjust the columns
|
| 421 |
+
if isinstance(df.columns, pd.MultiIndex):
|
| 422 |
+
df.columns = df.columns.droplevel(1) # remove the multi-index
|
| 423 |
+
|
| 424 |
+
# minimum columns expected
|
| 425 |
+
expected_columns = ["Open", "High", "Low", "Close", "Volume"]
|
| 426 |
+
|
| 427 |
+
# Make sure that the columns are correct
|
| 428 |
+
if not all(col in df.columns for col in expected_columns):
|
| 429 |
+
raise ValueError(f"Colunas do DataFrame incorretas: {df.columns}")
|
| 430 |
+
|
| 431 |
+
# Creates the data feed
|
| 432 |
+
data = bt.feeds.PandasData(dataname=df)
|
| 433 |
+
self.cerebro.adddata(data)
|
| 434 |
+
|
| 435 |
+
def run_simulation(self, initial_cash, commission):
|
| 436 |
+
self.cerebro.broker.setcash(initial_cash)
|
| 437 |
+
self.cerebro.broker.setcommission(commission=commission)
|
| 438 |
+
print(f'\nStarting Portfolio Value: {self.cerebro.broker.getvalue():.2f}')
|
| 439 |
+
self.cerebro.run()
|
| 440 |
+
print(f'Final Portfolio Value: {self.cerebro.broker.getvalue():.2f}')
|
| 441 |
+
return self.cerebro.broker.getvalue()
|
| 442 |
+
|
| 443 |
+
class CustomStrategy(bt.Strategy):
|
| 444 |
+
params = (
|
| 445 |
+
('analysis', None),
|
| 446 |
+
('rsi_period', 14),
|
| 447 |
+
('rsi_upper', 70),
|
| 448 |
+
('rsi_lower', 30),
|
| 449 |
+
('sma_short', 50),
|
| 450 |
+
('sma_long', 200),
|
| 451 |
+
('max_loss_percent', 0.02),
|
| 452 |
+
('take_profit_percent', 0.05),
|
| 453 |
+
('position_size', 0.1),
|
| 454 |
+
('atr_period', 14),
|
| 455 |
+
('atr_multiplier', 3),
|
| 456 |
+
('sentiment_threshold', 0.6), # Novo parâmetro
|
| 457 |
+
('confidence_threshold', 0.7) # Novo parâmetro
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
def __init__(self):
|
| 461 |
+
# Parâmetros agora são acessados via self.params
|
| 462 |
+
self.recommendation = self.params.analysis['recommendation'] if self.params.analysis else 'HOLD'
|
| 463 |
+
self.technical_analysis = self.params.analysis['technical'] if self.params.analysis else None
|
| 464 |
+
self.sentiment_analysis = self.params.analysis['sentiment'] if self.params.analysis else None
|
| 465 |
+
self.confidence = self.params.analysis['confidence']['total_confidence'] if self.params.analysis else 0.5
|
| 466 |
+
|
| 467 |
+
# Indicadores usando parâmetros dinâmicos
|
| 468 |
+
self.rsi = bt.indicators.RSI(
|
| 469 |
+
self.data.close,
|
| 470 |
+
period=self.params.rsi_period
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
self.sma_short = bt.indicators.SMA(
|
| 474 |
+
self.data.close,
|
| 475 |
+
period=self.params.sma_short
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
self.sma_long = bt.indicators.SMA(
|
| 479 |
+
self.data.close,
|
| 480 |
+
period=self.params.sma_long
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
# Technical Indicators
|
| 485 |
+
self.rsi = bt.indicators.RSI(self.data.close, period=self.p.rsi_period)
|
| 486 |
+
self.sma_short = bt.indicators.SMA(self.data.close, period=self.p.sma_short)
|
| 487 |
+
self.sma_long = bt.indicators.SMA(self.data.close, period=self.p.sma_long)
|
| 488 |
+
|
| 489 |
+
# Volatility Indicator
|
| 490 |
+
self.atr = bt.indicators.ATR(self.data, period=self.p.atr_period)
|
| 491 |
+
|
| 492 |
+
# Trading management
|
| 493 |
+
self.order = None
|
| 494 |
+
self.stop_price = None
|
| 495 |
+
self.take_profit_price = None
|
| 496 |
+
self.buy_price = None
|
| 497 |
+
self.entry_date = None
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def log(self, txt, dt=None):
|
| 501 |
+
dt = dt or self.datas[0].datetime.date(0)
|
| 502 |
+
print(f'{dt.isoformat()}, {txt}')
|
| 503 |
+
|
| 504 |
+
def notify_order(self, order):
|
| 505 |
+
if order.status in [order.Submitted, order.Accepted]:
|
| 506 |
+
return
|
| 507 |
+
|
| 508 |
+
if order.status in [order.Completed]:
|
| 509 |
+
if order.isbuy():
|
| 510 |
+
self.log(f'BUY EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
|
| 511 |
+
self.buy_price = order.executed.price
|
| 512 |
+
self.entry_date = self.datas[0].datetime.date(0)
|
| 513 |
+
else:
|
| 514 |
+
self.log(f'SELL EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
|
| 515 |
+
|
| 516 |
+
self.order = None
|
| 517 |
+
|
| 518 |
+
def notify_trade(self, trade):
|
| 519 |
+
if not trade.isclosed:
|
| 520 |
+
return
|
| 521 |
+
|
| 522 |
+
self.log(f'TRADE PROFIT, GROSS: {trade.pnl:.2f}, NET: {trade.pnlcomm:.2f}')
|
| 523 |
+
|
| 524 |
+
def calculate_position_size(self):
|
| 525 |
+
portfolio_value = self.broker.getvalue()
|
| 526 |
+
return int((portfolio_value * self.p.position_size) / self.data.close[0])
|
| 527 |
+
|
| 528 |
+
def next(self):
|
| 529 |
+
# Prevent multiple orders
|
| 530 |
+
if self.order:
|
| 531 |
+
return
|
| 532 |
+
|
| 533 |
+
current_price = self.data.close[0]
|
| 534 |
+
portfolio_value = self.broker.getvalue()
|
| 535 |
+
|
| 536 |
+
# Usar parâmetros dinâmicos nas regras
|
| 537 |
+
stop_loss = current_price * (1 - self.params.max_loss_percent)
|
| 538 |
+
take_profit = current_price * (1 + self.params.take_profit_percent)
|
| 539 |
+
|
| 540 |
+
# Analyze prior analysis for additional confirmation
|
| 541 |
+
analysis_confirmation = self._analyze_prior_research()
|
| 542 |
+
|
| 543 |
+
# No open position - look for entry
|
| 544 |
+
if not self.position:
|
| 545 |
+
# Enhanced entry conditions
|
| 546 |
+
# Condições com parâmetros ajustáveis
|
| 547 |
+
entry_conditions = (
|
| 548 |
+
current_price > self.sma_long[0] and
|
| 549 |
+
self.rsi[0] < self.params.rsi_lower and
|
| 550 |
+
bool(self.params.analysis['confidence']['total_confidence'] > self.p.confidence_threshold)
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
if entry_conditions:
|
| 554 |
+
# Calculate position size
|
| 555 |
+
size = self.calculate_position_size()
|
| 556 |
+
|
| 557 |
+
# Place buy order
|
| 558 |
+
self.order = self.buy(size=size)
|
| 559 |
+
|
| 560 |
+
# Calculate stop loss and take profit
|
| 561 |
+
stop_loss = current_price * (1 - self.p.max_loss_percent)
|
| 562 |
+
take_profit = current_price * (1 + self.p.take_profit_percent)
|
| 563 |
+
|
| 564 |
+
# Alternative stop loss using ATR for volatility
|
| 565 |
+
atr_stop = current_price - (self.atr[0] * self.p.atr_multiplier)
|
| 566 |
+
self.stop_price = max(stop_loss, atr_stop)
|
| 567 |
+
self.take_profit_price = take_profit
|
| 568 |
+
|
| 569 |
+
# Manage existing position
|
| 570 |
+
else:
|
| 571 |
+
# Exit conditions
|
| 572 |
+
exit_conditions = (
|
| 573 |
+
current_price < self.stop_price or # Stop loss triggered
|
| 574 |
+
current_price > self.take_profit_price or # Take profit reached
|
| 575 |
+
self.rsi[0] > self.p.rsi_upper or # Overbought condition
|
| 576 |
+
current_price < self.sma_short[0] or # Trend change
|
| 577 |
+
not analysis_confirmation # Loss of analysis confirmation
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
if exit_conditions:
|
| 581 |
+
self.close() # Close entire position
|
| 582 |
+
self.stop_price = None
|
| 583 |
+
self.take_profit_price = None
|
| 584 |
+
|
| 585 |
+
def _analyze_prior_research(self):
|
| 586 |
+
# Integrate multiple analysis aspects
|
| 587 |
+
if not self.p.analysis:
|
| 588 |
+
return True
|
| 589 |
+
|
| 590 |
+
# Sentiment analysis check
|
| 591 |
+
sentiment_positive = (
|
| 592 |
+
self.sentiment_analysis and
|
| 593 |
+
self.sentiment_analysis['sentiment']['positive'] > self.p.sentiment_threshold
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
# Technical analysis check
|
| 597 |
+
technical_bullish = (
|
| 598 |
+
self.technical_analysis and
|
| 599 |
+
self.technical_analysis['trend'] == 'bullish'
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
# Confidence check
|
| 603 |
+
high_confidence = bool(self.confidence > self.p.confidence_threshold)
|
| 604 |
+
|
| 605 |
+
# Combine conditions
|
| 606 |
+
return sentiment_positive and technical_bullish and high_confidence
|
| 607 |
+
|
| 608 |
+
def stop(self):
|
| 609 |
+
# Final report when backtest completes
|
| 610 |
+
self.log('Final Portfolio Value: %.2f' % self.broker.getvalue())
|
| 611 |
+
|
| 612 |
+
# 8. Main
|
| 613 |
+
if __name__ == "__main__":
|
| 614 |
+
pipeline = AnalysisPipeline()
|
| 615 |
+
|
| 616 |
+
print("\n=== Analysis of Stock-Market ===")
|
| 617 |
+
|
| 618 |
+
# 1. Requesting the company ticker
|
| 619 |
+
ticker = input("Type the company ticker (ex: AAPL): ").strip().upper()
|
| 620 |
+
|
| 621 |
+
# 2. Requesting if the user wants to fetch new data
|
| 622 |
+
while True:
|
| 623 |
+
fetch_new = input("Would you like to have new data from internet? (y/n): ").lower()
|
| 624 |
+
if fetch_new in ['y', 'n', 'yes', 'no', 'no']:
|
| 625 |
+
fetch_new_bool = fetch_new in ['y', 'no']
|
| 626 |
+
break
|
| 627 |
+
print("Not a valid option! Type y or n")
|
| 628 |
+
|
| 629 |
+
initial_investment = float(input("Inicial Investment (USD): "))
|
| 630 |
+
years_back = int(input("Historical Period (years): "))
|
| 631 |
+
commission = float(input("Commission per trade: "))
|
| 632 |
+
|
| 633 |
+
# 3. API Key for NewsAPI
|
| 634 |
+
news_api_key = '85bfdbb4f83f4b148cd219196b4b6447'
|
| 635 |
+
|
| 636 |
+
# 4. Running the analysis
|
| 637 |
+
print(f"\nRunning the analysis with Machine Learning {ticker}...")
|
| 638 |
+
result = pipeline.analyze_company(
|
| 639 |
+
ticker=ticker,
|
| 640 |
+
news_api_key=news_api_key if news_api_key else None,
|
| 641 |
+
fetch_new=fetch_new_bool
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
# 5. Showing the results
|
| 645 |
+
if result:
|
| 646 |
+
|
| 647 |
+
# Running the simulation with Backtrader
|
| 648 |
+
end_date = datetime.now()
|
| 649 |
+
start_date = end_date - timedelta(days=years_back*365)
|
| 650 |
+
|
| 651 |
+
bt_integration = BacktraderIntegration(result)
|
| 652 |
+
bt_integration.add_data_feed(ticker, start_date, end_date)
|
| 653 |
+
final_value = bt_integration.run_simulation(initial_investment, commission)
|
| 654 |
+
|
| 655 |
+
print("\n=== Analysis Result ===")
|
| 656 |
+
print(f"Recommendation: {result['recommendation']}")
|
| 657 |
+
print(f"Confidence: {result['confidence']['total_confidence']:.2%}")
|
| 658 |
+
print(f"Return of the Simulation: {(final_value/initial_investment-1)*100:.2f}%")
|
| 659 |
+
print("\nDetails:")
|
| 660 |
+
print(f"1. Sentiment: {json.dumps(result['sentiment']['sentiment'], indent=2)}")
|
| 661 |
+
print(f"2. Technical Analysis: RSI {result['technical']['rsi']:.1f}, Price vs SMA50: {result['technical']['price_vs_sma']:.2%}")
|
| 662 |
+
print(f"3. Fundamental: P/E {result['fundamental'].get('trailingPE', 'N/A')} vs Sctor {result['fundamental'].get('sectorPE', 'N/A')}")
|
| 663 |
+
print(f"4. Confidence Components: {json.dumps(result['confidence']['components'], indent=2)}")
|
| 664 |
+
else:
|
| 665 |
+
print("\nIt was not possible to run the analysis, please check:")
|
| 666 |
+
print("- Internet connection")
|
| 667 |
+
print("- Ticker value")
|
| 668 |
+
print("- Historical data availability")
|