import os import random import uuid import smtplib import ssl from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from base64 import b64encode from datetime import datetime from mimetypes import guess_type from pathlib import Path from typing import Optional import json import spaces import spaces import gradio as gr from feedback import save_feedback, scheduler from gradio.components.chatbot import Option from huggingface_hub import InferenceClient from pandas import DataFrame from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM BASE_MODEL = os.getenv("MODEL", "google/gemma-3-12b-pt") ZERO_GPU = ( bool(os.getenv("ZERO_GPU", False)) or True if str(os.getenv("ZERO_GPU")).lower() == "true" else False ) TEXT_ONLY = ( bool(os.getenv("TEXT_ONLY", False)) or True if str(os.getenv("TEXT_ONLY")).lower() == "true" else False ) def create_inference_client( model: Optional[str] = None, base_url: Optional[str] = None ) -> InferenceClient | dict: """Create an InferenceClient instance with the given model or environment settings. This function will run the model locally if ZERO_GPU is set to True. This function will run the model locally if ZERO_GPU is set to True. Args: model: Optional model identifier to use. If not provided, will use environment settings. base_url: Optional base URL for the inference API. Returns: Either an InferenceClient instance or a dictionary with pipeline and tokenizer """ if ZERO_GPU: tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, load_in_8bit=False) return { "pipeline": pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2000, ), "tokenizer": tokenizer } else: return InferenceClient( token=os.getenv("HF_TOKEN"), model=model if model else (BASE_MODEL if not base_url else None), base_url=base_url, ) CLIENT = create_inference_client() def get_persistent_storage_path(filename: str) -> tuple[Path, bool]: """Check if persistent storage is available and return the appropriate path. Args: filename: The name of the file to check/create Returns: A tuple containing (file_path, is_persistent) """ persistent_path = Path("/data") / filename local_path = Path(__file__).parent / filename # Check if persistent storage is available and writable use_persistent = False if Path("/data").exists() and Path("/data").is_dir(): try: # Test if we can write to the directory test_file = Path("/data/write_test.tmp") test_file.touch() test_file.unlink() # Remove the test file use_persistent = True except (PermissionError, OSError): print("Persistent storage exists but is not writable, falling back to local storage") use_persistent = False return (persistent_path if use_persistent else local_path, use_persistent) def load_languages() -> dict[str, str]: """Load languages from JSON file or persistent storage""" languages_path, use_persistent = get_persistent_storage_path("languages.json") local_path = Path(__file__).parent / "languages.json" # If persistent storage is available but file doesn't exist yet, copy the local file to persistent storage if use_persistent and not languages_path.exists(): try: if local_path.exists(): import shutil shutil.copy(local_path, languages_path) print(f"Copied languages to persistent storage at {languages_path}") else: with open(languages_path, "w", encoding="utf-8") as f: json.dump({"English": "You are a helpful assistant."}, f, ensure_ascii=False, indent=2) print(f"Created new languages file in persistent storage at {languages_path}") except Exception as e: print(f"Error setting up persistent storage: {e}") languages_path = local_path # Fall back to local path if any error occurs if not languages_path.exists() and local_path.exists(): languages_path = local_path if languages_path.exists(): with open(languages_path, "r", encoding="utf-8") as f: return json.load(f) else: default_languages = {"English": "You are a helpful assistant."} return default_languages LANGUAGES = load_languages() USER_AGREEMENT = """ You have been asked to participate in a research study conducted by Lingo Lab from the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (M.I.T.), together with huggingface. The purpose of this study is the collection of multilingual human feedback to improve language models. As part of this study you will interat with a language model in a langugage of your choice, and provide indication to wether its reponses are helpful or not. Your name and personal data will never be recorded. You may decline further participation, at any time, without adverse consequences.There are no foreseeable risks or discomforts for participating in this study. Note participating in the study may pose risks that are currently unforeseeable. If you have questions or concerns about the study, you can contact the researchers at leshem@mit.edu. If you have any questions about your rights as a participant in this research (E-6610), feel you have been harmed, or wish to discuss other study-related concerns with someone who is not part of the research team, you can contact the M.I.T. Committee on the Use of Humans as Experimental Subjects (COUHES) by phone at (617) 253-8420, or by email at couhes@mit.edu. Clicking on the next button at the bottom of this page indicates that you are at least 18 years of age and willingly agree to participate in the research voluntarily. """ def add_user_message(history, message): if isinstance(message, dict) and "files" in message: for x in message["files"]: history.append({"role": "user", "content": {"path": x}}) if message["text"] is not None: history.append({"role": "user", "content": message["text"]}) else: history.append({"role": "user", "content": message}) return history, gr.Textbox(value=None, interactive=False) def format_system_message(language: str, history: list): system_message = [ { "role": "system", "content": LANGUAGES.get(language, LANGUAGES["English"]), } ] if history and history[0]["role"] == "system": history = history[1:] history = system_message + history return history def format_history_as_messages(history: list): messages = [] current_role = None current_message_content = [] if TEXT_ONLY: for entry in history: messages.append({"role": entry["role"], "content": entry["content"]}) return messages if TEXT_ONLY: for entry in history: messages.append({"role": entry["role"], "content": entry["content"]}) return messages for entry in history: content = entry["content"] if entry["role"] != current_role: if current_role is not None: messages.append( {"role": current_role, "content": current_message_content} ) current_role = entry["role"] current_message_content = [] if isinstance(content, tuple): # Handle file paths for temp_path in content: if space_host := os.getenv("SPACE_HOST"): url = f"https://{space_host}/gradio_api/file%3D{temp_path}" else: url = _convert_path_to_data_uri(temp_path) current_message_content.append( {"type": "image_url", "image_url": {"url": url}} ) elif isinstance(content, str): # Handle text current_message_content.append({"type": "text", "text": content}) if current_role is not None: messages.append({"role": current_role, "content": current_message_content}) return messages def _convert_path_to_data_uri(path) -> str: mime_type, _ = guess_type(path) with open(path, "rb") as image_file: data = image_file.read() data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8") return data_uri def _is_file_safe(path) -> bool: try: return Path(path).is_file() except Exception: return "" def _process_content(content) -> str | list[str]: if isinstance(content, str) and _is_file_safe(content): return _convert_path_to_data_uri(content) elif isinstance(content, list) or isinstance(content, tuple): return _convert_path_to_data_uri(content[0]) return content def _process_rating(rating) -> int: if isinstance(rating, str): return 0 elif isinstance(rating, int): return rating else: raise ValueError(f"Invalid rating: {rating}") def add_fake_like_data( history: list, conversation_id: str, session_id: str, language: str, liked: bool = False, ) -> None: data = { "index": len(history) - 1, "value": history[-1], "liked": liked, } _, dataframe = wrangle_like_data( gr.LikeData(target=None, data=data), history.copy() ) submit_conversation( dataframe=dataframe, conversation_id=conversation_id, session_id=session_id, language=language, ) @spaces.GPU def call_pipeline(messages: list, language: str): """Call the appropriate model pipeline based on configuration""" if ZERO_GPU: tokenizer = CLIENT["tokenizer"] formatted_prompt = tokenizer.apply_chat_template( messages, tokenize=False, ) response = CLIENT["pipeline"]( formatted_prompt, clean_up_tokenization_spaces=False, max_length=2000, return_full_text=False, ) return response[0]["generated_text"] else: response = CLIENT( messages, clean_up_tokenization_spaces=False, max_length=2000, ) return response[0]["generated_text"][-1]["content"] def respond( history: list, language: str, temperature: Optional[float] = None, seed: Optional[int] = None, ) -> list: """Respond to the user message with a system message Return the history with the new message""" messages = format_history_as_messages(history) if ZERO_GPU: content = call_pipeline(messages, language) else: response = CLIENT.chat.completions.create( messages=messages, max_tokens=2000, stream=False, seed=seed, temperature=temperature, ) content = response.choices[0].message.content message = gr.ChatMessage(role="assistant", content=content) history.append(message) return history def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame: """Update the dataframe with the new message""" data = { "index": 9999, "value": None, "liked": False, } _, dataframe = wrangle_like_data( gr.LikeData(target=None, data=data), history.copy() ) return dataframe def wrangle_like_data(x: gr.LikeData, history) -> DataFrame: """Wrangle conversations and liked data into a DataFrame""" if isinstance(x.index, int): liked_index = x.index else: liked_index = x.index[0] output_data = [] for idx, message in enumerate(history): if isinstance(message, gr.ChatMessage): message = message.__dict__ if idx == liked_index: if x.liked is True: message["metadata"] = {"title": "liked"} elif x.liked is False: message["metadata"] = {"title": "disliked"} if message["metadata"] is None: message["metadata"] = {} elif not isinstance(message["metadata"], dict): message["metadata"] = message["metadata"].__dict__ rating = message["metadata"].get("title") if rating == "liked": message["rating"] = 1 elif rating == "disliked": message["rating"] = -1 else: message["rating"] = 0 message["chosen"] = "" message["rejected"] = "" if message["options"]: for option in message["options"]: if not isinstance(option, dict): option = option.__dict__ message[option["label"]] = option["value"] else: if message["rating"] == 1: message["chosen"] = message["content"] elif message["rating"] == -1: message["rejected"] = message["content"] output_data.append( dict( [(k, v) for k, v in message.items() if k not in ["metadata", "options"]] ) ) return history, DataFrame(data=output_data) def wrangle_edit_data( x: gr.EditData, history: list, dataframe: DataFrame, conversation_id: str, session_id: str, language: str, ) -> list: """Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message Return the history with the new message""" if isinstance(x.index, int): index = x.index else: index = x.index[0] original_message = gr.ChatMessage( role="assistant", content=dataframe.iloc[index]["content"] ).__dict__ if history[index]["role"] == "user": # Add feedback on original and corrected message add_fake_like_data( history=history[: index + 2], conversation_id=conversation_id, session_id=session_id, language=language, liked=True, ) add_fake_like_data( history=history[: index + 1] + [original_message], conversation_id=conversation_id, session_id=session_id, language=language, ) history = respond( history=history[: index + 1], language=language, temperature=random.randint(1, 100) / 100, seed=random.randint(0, 1000000), ) return history else: add_fake_like_data( history=history[: index + 1], conversation_id=conversation_id, session_id=session_id, language=language, liked=True, ) add_fake_like_data( history=history[:index] + [original_message], conversation_id=conversation_id, session_id=session_id, language=language, ) history = history[: index + 1] history[-1]["options"] = [ Option(label="chosen", value=x.value), Option(label="rejected", value=original_message["content"]), ] return history def wrangle_retry_data( x: gr.RetryData, history: list, dataframe: DataFrame, conversation_id: str, session_id: str, language: str, ) -> list: """Respond to the user message with a system message and add negative feedback on the original message Return the history with the new message""" add_fake_like_data( history=history, conversation_id=conversation_id, session_id=session_id, language=language, ) # Return the history without a new message history = respond( history=history[:-1], language=language, temperature=random.randint(1, 100) / 100, seed=random.randint(0, 1000000), ) return history, update_dataframe(dataframe, history) def submit_conversation(dataframe, conversation_id, session_id, language): """ "Submit the conversation to dataset repo""" if dataframe.empty or len(dataframe) < 2: gr.Info("No feedback to submit.") return (gr.Dataframe(value=None, interactive=False), []) dataframe["content"] = dataframe["content"].apply(_process_content) dataframe["rating"] = dataframe["rating"].apply(_process_rating) conversation = dataframe.to_dict(orient="records") conversation_data = { "conversation": conversation, "timestamp": datetime.now().isoformat(), "session_id": session_id, "conversation_id": conversation_id, "language": language, } save_feedback(input_object=conversation_data) return (gr.Dataframe(value=None, interactive=False), []) def open_add_language_modal(): return gr.Group(visible=True) def close_add_language_modal(): return gr.Group(visible=False) def save_new_language(lang_name, system_prompt): """Save the new language and system prompt to persistent storage if available, otherwise to local file.""" global LANGUAGES languages_path, use_persistent = get_persistent_storage_path("languages.json") local_path = Path(__file__).parent / "languages.json" if languages_path.exists(): with open(languages_path, "r", encoding="utf-8") as f: data = json.load(f) else: data = {} data[lang_name] = system_prompt with open(languages_path, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=2) if use_persistent and local_path != languages_path: try: with open(local_path, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=2) except Exception as e: print(f"Error updating local backup: {e}") LANGUAGES.update({lang_name: system_prompt}) return gr.Group(visible=False), gr.HTML(""), gr.Dropdown(choices=list(LANGUAGES.keys())) def save_contributor_email(email, name=""): """Save contributor email to persistent storage""" emails_path, use_persistent = get_persistent_storage_path("contributors.json") # Read existing emails if emails_path.exists(): with open(emails_path, "r", encoding="utf-8") as f: contributors = json.load(f) else: contributors = [] # Add new email with timestamp contributors.append({ "email": email, "name": name, "timestamp": datetime.now().isoformat() }) # Save back to file with open(emails_path, "w", encoding="utf-8") as f: json.dump(contributors, f, ensure_ascii=False, indent=2) return True # Add this to view emails (protected with admin password) def view_contributors(password): """View contributor emails (protected)""" correct_password = os.getenv("ADMIN_PASSWORD", "default_admin_password") print(f"Entered password: {password}, Correct: {password == correct_password}") if password != correct_password: return "Incorrect password. Please try again.", gr.Dataframe(visible=False) emails_path, _ = get_persistent_storage_path("contributors.json") print(f"Checking for contributors at: {emails_path}, exists: {emails_path.exists()}") if not emails_path.exists(): return f"No contributors found. File does not exist at {emails_path}", gr.Dataframe(visible=False) try: with open(emails_path, "r", encoding="utf-8") as f: contributors = json.load(f) if not contributors: return "Contributors file exists but is empty.", gr.Dataframe(visible=False) # Convert the list of dictionaries to a pandas DataFrame df = DataFrame(contributors) # Return the DataFrame with visible=True return f"Found {len(contributors)} contributors.", gr.Dataframe(value=df, visible=True) except Exception as e: print(f"Error reading contributors file: {str(e)}") return f"Error reading contributors file: {str(e)}", gr.Dataframe(visible=False) css = """ .options.svelte-pcaovb { display: none !important; } .option.svelte-pcaovb { display: none !important; } .retry-btn { display: none !important; } /* Style for the add language button */ button#add-language-btn { padding: 0 !important; font-size: 30px !important; font-weight: bold !important; } /* Style for the user agreement container */ .user-agreement-container { box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important; max-height: 300px; overflow-y: auto; padding: 10px; border: 1px solid #ddd; border-radius: 5px; margin-bottom: 10px; } /* Style for the consent modal */ .consent-modal { position: fixed !important; top: 50% !important; left: 50% !important; transform: translate(-50%, -50%) !important; z-index: 9999 !important; background: white !important; padding: 20px !important; border-radius: 10px !important; box-shadow: 0 4px 10px rgba(0,0,0,0.2) !important; max-width: 90% !important; width: 600px !important; } /* Overlay for the consent modal */ .modal-overlay { position: fixed !important; top: 0 !important; left: 0 !important; width: 100% !important; height: 100% !important; background-color: rgba(0, 0, 0, 0.5) !important; z-index: 9998 !important; } .footer-banner { background-color: #f5f5f5; padding: 10px 20px; border-top: 1px solid #ddd; margin-top: 20px; text-align: center; } .footer-banner p { margin: 0; } /* Language settings styling */ .language-settings-header { background-color: #FFD21E; /* Hugging Face yellow */ padding: 5px; /* Controls padding inside header */ border-radius: 8px 8px 0 0; margin-bottom: 0; /* Controls space below header */ color: #333; font-weight: bold; } .language-instruction { margin-top: 5px; /* Controls space above instruction text */ margin-bottom: 5px; /* Controls space below instruction text */ padding: 0 15px; /* Controls left/right padding */ } .language-container { border: 1px solid #e0e0e0; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 5px rgba(0,0,0,0.1); margin-bottom: 20px; /* Space below the entire container */ } .language-dropdown { padding: 10px 15px 20px 15px; /* Controls padding around dropdown (top, right, bottom, left) */ } .add-language-btn { background-color: #FFD21E !important; color: #333 !important; border: none !important; font-weight: bold !important; transition: background-color 0.3s !important; } .add-language-btn:hover { background-color: #F3C200 !important; } /* Yellow button styling */ button.yellow-btn { background-color: #FFD21E !important; } """ def get_config(request: gr.Request): """Get configuration from cookies""" config = {"feel_consent": "false"} # Default value if request and 'feel_consent' in request.cookies: config["feel_consent"] = request.cookies['feel_consent'] return config["feel_consent"] == "true" # Return boolean def initialize_consent_status(request: gr.Request): """Initialize consent status from cookies""" return get_config(request) js = '''function js(){ window.set_cookie = function(key, value){ document.cookie = key+'='+value+'; Path=/; SameSite=Strict'; return [value]; } }''' with gr.Blocks(css=css, js=js) as demo: # State variable to track if user has consented user_consented = gr.State(value=False) # Initialize language dropdown first language = gr.State(value="English") # Default language state # Main application interface (initially hidden) with gr.Group() as main_app: with gr.Row(): # Main content column (wider) with gr.Column(scale=3, elem_classes=["main-content"]): ############################## # Chatbot ############################## gr.Markdown(""" # ♾️ FeeL: Improving LMs for All Languages """, elem_classes=["app-title"]) with gr.Accordion("") as explanation: gr.Markdown(f""" **FeeL** (Feedback Loop) is a community-driven project by MIT, Hugging Face and IBM that aims to make language models better in *all languages*. ### Why This Matters Have you ever tried using an AI in your native language only to get responses that barely make sense? Most AI improvements prioritize widely spoken languages, while others fall behind. FeeL changes this by letting YOU shape how models respond in your language. ### What You Can Do 1. **Select your language** from the dropdown menu (or add a new one if yours is missing) 2. **Chat with the model** in your language 3. **Provide feedback** on each response using: - πŸ‘/πŸ‘Ž Like or dislike responses - ✏️ Edit responses to sound more natural or correct - πŸ”„ Regenerate to try another response Your feedback is directly used to fine-tune the model in real-time. The more you interact, the better the model becomes for your language community. All [data](https://huggingface.co/datasets/{scheduler.repo_id}), [code](https://github.com/huggingface/feel) and [models](https://huggingface.co/collections/feel-fl/feel-models-67a9b6ef0fdd554315e295e8) are publicly available for research and development. """) chatbot = gr.Chatbot( elem_id="chatbot", editable="all", value=[ { "role": "system", "content": LANGUAGES["English"], # Use default language initially } ], type="messages", feedback_options=["Like", "Dislike"], height=600 ) chat_input = gr.Textbox( interactive=True, placeholder="Enter message or upload file...", show_label=False, submit_btn=True, ) with gr.Accordion("Collected feedback", open=False): dataframe = gr.Dataframe(wrap=True, label="Collected feedback") submit_btn = gr.Button(value="πŸ’Ύ Submit conversation", visible=False) # Sidebar column (narrower) with gr.Column(scale=1, elem_classes=["sidebar"]): with gr.Group(elem_classes=["language-container"]): gr.Markdown("### Language Settings", elem_classes=["language-settings-header"]) gr.Markdown("Select your preferred language:", elem_classes=["language-instruction"]) with gr.Column(elem_classes=["language-dropdown"]): language_dropdown = gr.Dropdown( choices=list(load_languages().keys()), value="English", container=True, show_label=False, ) add_language_btn = gr.Button( "Add New Language", size="sm", elem_classes=["add-language-btn"] ) # Create a hidden group instead of a modal with gr.Group(visible=False) as add_language_modal: gr.Markdown("### Add New Language") new_lang_name = gr.Textbox(label="Language Name", lines=1) new_system_prompt = gr.Textbox(label="System Prompt", lines=4) with gr.Row(): save_language_btn = gr.Button("Save") cancel_language_btn = gr.Button("Cancel") # Add Contributors Tab with gr.Accordion("Thank You for Contributing", open=False): gr.Markdown(""" We'd like to thank you for using FeeL and contributing to the improvement of multilingual language models. If you'd like us to reach out to you, please leave your email below. Your email will only be visible to the FeeL development team and won't be shared with others. """) contributor_email = gr.Textbox( label="Your Email (optional)", placeholder="email@example.com", type="email" ) contributor_name = gr.Textbox( label="Your Name (optional)", placeholder="Your name" ) email_consent = gr.Checkbox( label="I consent to being contacted by the FeeL team about my contributions", value=False ) submit_email_btn = gr.Button("Submit") email_submit_status = gr.Markdown("") # Admin section (hidden by default) with gr.Accordion("Admin Access", open=False, visible=True): admin_password = gr.Textbox( label="Admin Password", type="password" ) view_emails_btn = gr.Button("View Contributors") admin_status = gr.Markdown("") contributor_table = gr.Dataframe(visible=False) refresh_html = gr.HTML(visible=False) session_id = gr.Textbox( interactive=False, value=str(uuid.uuid4()), visible=False, ) conversation_id = gr.Textbox( interactive=False, value=str(uuid.uuid4()), visible=False, ) # Overlay for the consent modal with gr.Group(elem_classes=["modal-overlay"]) as consent_overlay: pass # Consent popup with gr.Group(elem_classes=["consent-modal"]) as consent_modal: gr.Markdown("# User Agreement") with gr.Group(elem_classes=["user-agreement-container"]): gr.Markdown(USER_AGREEMENT) consent_btn = gr.Button("I agree") # Check consent on page load and show/hide components appropriately def initialize_consent_status(): # This function will be called when the app loads return False # Default to not consented def update_visibility(has_consent): # Show/hide components based on consent status return ( gr.Group(visible=has_consent), # main_app gr.Group(visible=not has_consent), # consent_overlay gr.Group(visible=not has_consent) # consent_modal ) # Initialize app with consent checking demo.load( fn=initialize_consent_status, outputs=user_consented, ).then( fn=update_visibility, inputs=user_consented, outputs=[main_app, consent_overlay, consent_modal] ) # Update the consent button click handler consent_btn.click( fn=lambda: True, outputs=user_consented, js="(value) => set_cookie('feel_consent', 'true')" ).then( fn=update_visibility, inputs=user_consented, outputs=[main_app, consent_overlay, consent_modal] ) ############################## # Deal with feedback ############################## language_dropdown.change( fn=format_system_message, inputs=[language_dropdown, chatbot], outputs=[chatbot], ).then( fn=lambda x: x, # Update the language state inputs=[language_dropdown], outputs=[language] ) chat_input.submit( fn=add_user_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], ).then(respond, inputs=[chatbot, language], outputs=[chatbot]).then( lambda: gr.Textbox(interactive=True), None, [chat_input] ).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe]).then( submit_conversation, inputs=[dataframe, conversation_id, session_id, language], ) chatbot.like( fn=wrangle_like_data, inputs=[chatbot], outputs=[chatbot, dataframe], like_user_message=False, ).then( submit_conversation, inputs=[dataframe, conversation_id, session_id, language], ) chatbot.retry( fn=wrangle_retry_data, inputs=[chatbot, dataframe, conversation_id, session_id, language], outputs=[chatbot, dataframe], ) chatbot.edit( fn=wrangle_edit_data, inputs=[chatbot, dataframe, conversation_id, session_id, language], outputs=[chatbot], ).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe]) gr.on( triggers=[submit_btn.click, chatbot.clear], fn=submit_conversation, inputs=[dataframe, conversation_id, session_id, language], outputs=[dataframe, chatbot], ).then( fn=lambda x: str(uuid.uuid4()), inputs=[conversation_id], outputs=[conversation_id], ) def on_app_load(): global LANGUAGES LANGUAGES = load_languages() language_choices = list(LANGUAGES.keys()) default_language = language_choices[0] if language_choices else "English" return str(uuid.uuid4()), gr.Dropdown(choices=language_choices, value=default_language), default_language demo.load( fn=on_app_load, inputs=None, outputs=[session_id, language_dropdown, language] ) add_language_btn.click( fn=lambda: gr.Group(visible=True), outputs=[add_language_modal] ) cancel_language_btn.click( fn=lambda: gr.Group(visible=False), outputs=[add_language_modal] ) save_language_btn.click( fn=save_new_language, inputs=[new_lang_name, new_system_prompt], outputs=[add_language_modal, refresh_html, language_dropdown] ) # Connect the events submit_email_btn.click( fn=lambda email, name, consent: "Thank you for your submission!" if consent else "Please provide consent to submit", inputs=[contributor_email, contributor_name, email_consent], outputs=[email_submit_status] ).then( fn=lambda email, name, consent: save_contributor_email(email, name) if consent else None, inputs=[contributor_email, contributor_name, email_consent], outputs=None ) view_emails_btn.click( fn=view_contributors, inputs=[admin_password], outputs=[admin_status, contributor_table] ) # Add a contact footer at the bottom of the page with gr.Row(elem_classes=["footer-banner"]): gr.Markdown(""" ### Contact Us Have questions, requests, or ideas for how we can improve? Email us at: **jen_ben@mit.edu** """) # Add a subtle language management section at the bottom with gr.Row(elem_classes=["footer-section"]): with gr.Accordion("πŸ”§ Admin Language Management", open=False, elem_classes=["admin-tools-accordion"]): # Removed the "Language File Manager" headline # Password authentication - button below password field admin_password = gr.Textbox( type="password", label="Admin Password", placeholder="Enter admin password" ) auth_button = gr.Button("Authenticate", size="sm") auth_status = gr.Markdown("") # File management (initially hidden) with gr.Group(visible=False) as lang_editor_group: gr.Markdown("Edit the languages JSON file below:", elem_classes=["edit-instructions"]) # Language file editor lang_json_editor = gr.Code( language="json", label="Languages JSON", lines=15 ) with gr.Row(): load_button = gr.Button("Load Current Languages", size="sm") save_button = gr.Button("Save Changes", size="sm", elem_classes=["yellow-btn"]) result_message = gr.Markdown("") # Add the necessary functions def authenticate(password): """Authenticate the admin password""" correct_password = os.getenv("ADMIN_PASSWORD", "default_admin_password") if password == correct_password: return "βœ… Authentication successful. You can now manage languages.", gr.Group(visible=True) else: return "❌ Incorrect password. Please try again.", gr.Group(visible=False) def load_languages_file(): """Load the languages file from persistent storage""" languages_path, _ = get_persistent_storage_path("languages.json") try: with open(languages_path, "r", encoding="utf-8") as f: content = f.read() return content, "Languages file loaded successfully." except Exception as e: return "", f"Error loading languages file: {str(e)}" def save_languages_file(json_content): """Save the languages file to persistent storage""" try: # Validate JSON format languages_dict = json.loads(json_content) # Basic validation if not isinstance(languages_dict, dict): return "Error: Content must be a JSON object (dictionary)." for key, value in languages_dict.items(): if not isinstance(key, str) or not isinstance(value, str): return f"Error: Keys and values must be strings. Issue with: {key}: {value}" # Save to file languages_path, _ = get_persistent_storage_path("languages.json") with open(languages_path, "w", encoding="utf-8") as f: f.write(json_content) return f"βœ… Languages file updated successfully with {len(languages_dict)} languages." except json.JSONDecodeError as e: return f"❌ Invalid JSON format: {str(e)}" except Exception as e: return f"❌ Error saving languages file: {str(e)}" # Connect the event handlers auth_button.click( fn=authenticate, inputs=[admin_password], outputs=[auth_status, lang_editor_group] ) load_button.click( fn=load_languages_file, inputs=[], outputs=[lang_json_editor, result_message] ) save_button.click( fn=save_languages_file, inputs=[lang_json_editor], outputs=[result_message] ) # Add CSS for the admin section css += """ .footer-section { margin-top: 40px; border-top: 1px solid #eee; padding-top: 20px; } .admin-tools-accordion { max-width: 800px; margin: 0 auto; } .edit-instructions { padding: 10px 0; margin-top: 5px; } .yellow-btn { background-color: #FFD21E !important; } """ demo.launch()