Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,572 Bytes
9cc6120 9109509 9cc6120 9109509 9cc6120 7ed0603 8880b78 9cc6120 0cba459 dedc4f1 294ddf1 0cba459 6ea04d8 dedc4f1 9cc6120 dedc4f1 9cc6120 6ea04d8 0cba459 6ea04d8 104bc54 9cc6120 d39610d 195ed03 d39610d 195ed03 d39610d 9cc6120 195ed03 9cc6120 c39cd57 9cc6120 c39cd57 9cc6120 85e41fb 7ccbe37 dedc4f1 7ccbe37 8880b78 9109509 7ccbe37 9109509 8880b78 9109509 dedc4f1 104bc54 dedc4f1 9109509 104bc54 9109509 104bc54 dedc4f1 9cc6120 9109509 9cc6120 9109509 8880b78 9109509 9cc6120 104bc54 9cc6120 8880b78 9cc6120 62aa801 8880b78 9cc6120 94c1e6b 9cc6120 8880b78 9cc6120 94c1e6b 9cc6120 8880b78 dedc4f1 8880b78 9109509 104bc54 8880b78 9109509 8880b78 16f921a dedc4f1 16f921a dedc4f1 16f921a dedc4f1 9109509 8880b78 9109509 8880b78 dedc4f1 8880b78 dedc4f1 8880b78 9109509 dedc4f1 9109509 dedc4f1 9109509 8880b78 104bc54 dedc4f1 9cc6120 7ccbe37 9cc6120 85e41fb 16f921a 9cc6120 16f921a 9cc6120 dedc4f1 7ccbe37 9cc6120 8880b78 16f921a 8880b78 35d154e 8880b78 9cc6120 ae49850 7ed0603 dedc4f1 ae49850 dedc4f1 ae49850 0cba459 ae49850 9cc6120 dedc4f1 9cc6120 104bc54 9cc6120 6ea04d8 0cba459 6ea04d8 9cc6120 104bc54 9cc6120 dedc4f1 9cc6120 dedc4f1 9cc6120 dc26845 9cc6120 6ea04d8 9109509 dedc4f1 9109509 81490b8 076b4f2 9cc6120 dedc4f1 9cc6120 104bc54 9109509 dedc4f1 8880b78 104bc54 dedc4f1 104bc54 8880b78 104bc54 dedc4f1 9cc6120 dedc4f1 9cc6120 dedc4f1 9cc6120 dedc4f1 9cc6120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import os
import random
import uuid
from base64 import b64encode
from datetime import datetime
from mimetypes import guess_type
from pathlib import Path
from typing import Optional
import gradio as gr
from feedback import save_feedback, scheduler
from gradio.components.chatbot import Option
from huggingface_hub import InferenceClient
from pandas import DataFrame
LANGUAGES: dict[str, str] = {
"English": "You are a helpful assistant. Always respond to requests in fluent and natural English, regardless of the language used by the user.",
"Dutch": "Je bent een behulpzame assistent die uitsluitend in het Nederlands communiceert. Beantwoord alle vragen en verzoeken in vloeiend en natuurlijk Nederlands, ongeacht de taal waarin de gebruiker schrijft.",
"Italian": "Sei un assistente utile e rispondi sempre in italiano in modo naturale e fluente, indipendentemente dalla lingua utilizzata dall'utente.",
"Spanish": "Eres un asistente útil que siempre responde en español de manera fluida y natural, independientemente del idioma utilizado por el usuario.",
"French": "Tu es un assistant utile qui répond toujours en français de manière fluide et naturelle, quelle que soit la langue utilisée par l'utilisateur.",
"German": "Du bist ein hilfreicher Assistent, der stets auf Deutsch in einer natürlichen und fließenden Weise antwortet, unabhängig von der Sprache des Benutzers.",
"Portuguese": "Você é um assistente útil que sempre responde em português de forma natural e fluente, independentemente do idioma utilizado pelo usuário.",
"Russian": "Ты полезный помощник, который всегда отвечает на русском языке плавно и естественно, независимо от языка пользователя.",
"Chinese": "你是一个有用的助手,总是用流畅自然的中文回答问题,无论用户使用哪种语言。",
"Japanese": "あなたは役に立つアシスタントであり、常に流暢で自然な日本語で応答します。ユーザーが使用する言語に関係なく、日本語で対応してください。",
"Korean": "당신은 유용한 도우미이며, 항상 유창하고 자연스러운 한국어로 응답합니다. 사용자가 어떤 언어를 사용하든 한국어로 대답하세요.",
"Hebrew": " אתה עוזר טוב ומועיל שמדבר בעברית ועונה בעברית.",
}
BASE_MODEL = os.getenv("MODEL", "meta-llama/Llama-3.2-11B-Vision-Instruct")
def create_inference_client(
model: Optional[str] = None, base_url: Optional[str] = None
) -> InferenceClient:
"""Create an InferenceClient instance with the given model or environment settings.
Args:
model: Optional model identifier to use. If not provided, will use environment settings.
Returns:
InferenceClient: Configured client instance
"""
return InferenceClient(
token=os.getenv("HF_TOKEN"),
model=model if model else (BASE_MODEL if not base_url else None),
base_url=base_url,
)
LANGUAGES_TO_CLIENT = {
"English": create_inference_client(),
"Dutch": create_inference_client(),
"Italian": create_inference_client(),
"Spanish": create_inference_client(),
"French": create_inference_client(),
"German": create_inference_client(),
"Portuguese": create_inference_client(),
"Russian": create_inference_client(),
"Chinese": create_inference_client(),
"Japanese": create_inference_client(),
"Korean": create_inference_client(),
}
def add_user_message(history, message):
if isinstance(message, dict) and "files" in message:
for x in message["files"]:
history.append({"role": "user", "content": {"path": x}})
if message["text"] is not None:
history.append({"role": "user", "content": message["text"]})
else:
history.append({"role": "user", "content": message})
return history, gr.Textbox(value=None, interactive=False)
def format_system_message(language: str, history: list):
if history:
if history[0]["role"] == "system":
history = history[1:]
system_message = [
{
"role": "system",
"content": LANGUAGES[language],
}
]
history = system_message + history
return history
def format_history_as_messages(history: list):
messages = []
current_role = None
current_message_content = []
for entry in history:
content = entry["content"]
if entry["role"] != current_role:
if current_role is not None:
messages.append(
{"role": current_role, "content": current_message_content}
)
current_role = entry["role"]
current_message_content = []
if isinstance(content, tuple): # Handle file paths
for temp_path in content:
if space_host := os.getenv("SPACE_HOST"):
url = f"https://{space_host}/gradio_api/file%3D{temp_path}"
else:
url = _convert_path_to_data_uri(temp_path)
current_message_content.append(
{"type": "image_url", "image_url": {"url": url}}
)
elif isinstance(content, str): # Handle text
current_message_content.append({"type": "text", "text": content})
if current_role is not None:
messages.append({"role": current_role, "content": current_message_content})
return messages
def _convert_path_to_data_uri(path) -> str:
mime_type, _ = guess_type(path)
with open(path, "rb") as image_file:
data = image_file.read()
data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8")
return data_uri
def _is_file_safe(path) -> bool:
try:
return Path(path).is_file()
except Exception:
return ""
def _process_content(content) -> str | list[str]:
if isinstance(content, str) and _is_file_safe(content):
return _convert_path_to_data_uri(content)
elif isinstance(content, list) or isinstance(content, tuple):
return _convert_path_to_data_uri(content[0])
return content
def _process_rating(rating) -> int:
if isinstance(rating, str):
return 0
elif isinstance(rating, int):
return rating
else:
raise ValueError(f"Invalid rating: {rating}")
def add_fake_like_data(
history: list,
conversation_id: str,
session_id: str,
language: str,
liked: bool = False,
) -> None:
data = {
"index": len(history) - 1,
"value": history[-1],
"liked": liked,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
submit_conversation(
dataframe=dataframe,
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
def respond(
history: list,
language: str,
temperature: Optional[float] = None,
seed: Optional[int] = None,
) -> list: # -> list:
"""Respond to the user message with a system message
Return the history with the new message"""
messages = format_history_as_messages(history)
response = LANGUAGES_TO_CLIENT[language].chat.completions.create(
messages=messages,
max_tokens=2000,
stream=False,
seed=seed,
temperature=temperature,
)
content = response.choices[0].message.content
message = gr.ChatMessage(role="assistant", content=content)
history.append(message)
return history
def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame:
"""Update the dataframe with the new message"""
data = {
"index": 9999,
"value": None,
"liked": False,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
return dataframe
def wrangle_like_data(x: gr.LikeData, history) -> DataFrame:
"""Wrangle conversations and liked data into a DataFrame"""
if isinstance(x.index, int):
liked_index = x.index
else:
liked_index = x.index[0]
output_data = []
for idx, message in enumerate(history):
if isinstance(message, gr.ChatMessage):
message = message.__dict__
if idx == liked_index:
if x.liked is True:
message["metadata"] = {"title": "liked"}
elif x.liked is False:
message["metadata"] = {"title": "disliked"}
if not isinstance(message["metadata"], dict):
message["metadata"] = message["metadata"].__dict__
rating = message["metadata"].get("title")
if rating == "liked":
message["rating"] = 1
elif rating == "disliked":
message["rating"] = -1
else:
message["rating"] = 0
message["chosen"] = ""
message["rejected"] = ""
if message["options"]:
for option in message["options"]:
if not isinstance(option, dict):
option = option.__dict__
message[option["label"]] = option["value"]
else:
if message["rating"] == 1:
message["chosen"] = message["content"]
elif message["rating"] == -1:
message["rejected"] = message["content"]
output_data.append(
dict(
[(k, v) for k, v in message.items() if k not in ["metadata", "options"]]
)
)
return history, DataFrame(data=output_data)
def wrangle_edit_data(
x: gr.EditData,
history: list,
dataframe: DataFrame,
conversation_id: str,
session_id: str,
language: str,
) -> list:
"""Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message
Return the history with the new message"""
if isinstance(x.index, int):
index = x.index
else:
index = x.index[0]
original_message = gr.ChatMessage(
role="assistant", content=dataframe.iloc[index]["content"]
).__dict__
if history[index]["role"] == "user":
# Add feedback on original and corrected message
add_fake_like_data(
history=history[: index + 2],
conversation_id=conversation_id,
session_id=session_id,
language=language,
liked=True,
)
add_fake_like_data(
history=history[: index + 1] + [original_message],
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
history = respond(
history=history[: index + 1],
language=language,
temperature=random.randint(1, 100) / 100,
seed=random.randint(0, 1000000),
)
return history
else:
# Add feedback on original and corrected message
add_fake_like_data(
history=history[: index + 1],
conversation_id=conversation_id,
session_id=session_id,
language=language,
liked=True,
)
add_fake_like_data(
history=history[:index] + [original_message],
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
history = history[: index + 1]
# add chosen and rejected options
history[-1]["options"] = [
Option(label="chosen", value=x.value),
Option(label="rejected", value=original_message["content"]),
]
return history
def wrangle_retry_data(
x: gr.RetryData,
history: list,
dataframe: DataFrame,
conversation_id: str,
session_id: str,
language: str,
) -> list:
"""Respond to the user message with a system message and add negative feedback on the original message
Return the history with the new message"""
add_fake_like_data(
history=history,
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
# Return the history without a new message
history = respond(
history=history[:-1],
language=language,
temperature=random.randint(1, 100) / 100,
seed=random.randint(0, 1000000),
)
return history, update_dataframe(dataframe, history)
def submit_conversation(dataframe, conversation_id, session_id, language):
""" "Submit the conversation to dataset repo"""
if dataframe.empty or len(dataframe) < 2:
gr.Info("No feedback to submit.")
return (gr.Dataframe(value=None, interactive=False), [])
dataframe["content"] = dataframe["content"].apply(_process_content)
dataframe["rating"] = dataframe["rating"].apply(_process_rating)
conversation = dataframe.to_dict(orient="records")
conversation_data = {
"conversation": conversation,
"timestamp": datetime.now().isoformat(),
"session_id": session_id,
"conversation_id": conversation_id,
"language": language,
}
save_feedback(input_object=conversation_data)
return (gr.Dataframe(value=None, interactive=False), [])
css = """
.options.svelte-pcaovb {
display: none !important;
}
.option.svelte-pcaovb {
display: none !important;
}
.retry-btn {
display: none !important;
}
"""
with gr.Blocks(css=css) as demo:
##############################
# Chatbot
##############################
gr.Markdown("""
# ♾️ FeeL - a real-time Feedback Loop for LMs
""")
with gr.Accordion("Explanation") as explanation:
gr.Markdown(f"""
FeeL is a collaboration between Hugging Face and MIT.
It is a community-driven project to provide a real-time feedback loop for VLMs, where your feedback is continuously used to fine-tune the underlying models.
The [dataset](https://huggingface.co/datasets/{scheduler.repo_id}), [code](https://github.com/huggingface/feel) and [models](https://huggingface.co/collections/feel-fl/feel-models-67a9b6ef0fdd554315e295e8) are public.
Start by selecting your language, chat with the model with text and images and provide feedback in different ways.
- ✏️ Edit a message
- 👍/👎 Like or dislike a message
- 🔄 Regenerate a message
Feedback is automatically submitted allowing you to continue chatting, but you can also submit and reset the conversation by clicking "💾 Submit conversation" (under the chat) or trash the conversation by clicking "🗑️" (upper right corner).
""")
language = gr.Dropdown(
choices=list(LANGUAGES.keys()), label="Language", interactive=True
)
session_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
conversation_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
editable="all",
bubble_full_width=False,
value=[
{
"role": "system",
"content": LANGUAGES[language.value],
}
],
type="messages",
feedback_options=["Like", "Dislike"],
)
chat_input = gr.Textbox(
interactive=True,
placeholder="Enter message or upload file...",
show_label=False,
submit_btn=True,
)
with gr.Accordion("Collected feedback", open=False):
dataframe = gr.Dataframe(wrap=True, label="Collected feedback")
submit_btn = gr.Button(value="💾 Submit conversation", visible=False)
##############################
# Deal with feedback
##############################
language.change(
fn=format_system_message,
inputs=[language, chatbot],
outputs=[chatbot],
)
chat_input.submit(
fn=add_user_message,
inputs=[chatbot, chat_input],
outputs=[chatbot, chat_input],
).then(respond, inputs=[chatbot, language], outputs=[chatbot]).then(
lambda: gr.Textbox(interactive=True), None, [chat_input]
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe]).then(
submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
)
chatbot.like(
fn=wrangle_like_data,
inputs=[chatbot],
outputs=[chatbot, dataframe],
like_user_message=False,
).then(
submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
)
chatbot.retry(
fn=wrangle_retry_data,
inputs=[chatbot, dataframe, conversation_id, session_id, language],
outputs=[chatbot, dataframe],
)
chatbot.edit(
fn=wrangle_edit_data,
inputs=[chatbot, dataframe, conversation_id, session_id, language],
outputs=[chatbot],
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])
gr.on(
triggers=[submit_btn.click, chatbot.clear],
fn=submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
outputs=[dataframe, chatbot],
).then(
fn=lambda x: str(uuid.uuid4()),
inputs=[conversation_id],
outputs=[conversation_id],
)
demo.load(
lambda: str(uuid.uuid4()),
inputs=[],
outputs=[session_id],
)
demo.launch()
|