Spaces:
Runtime error
Runtime error
app
Browse files- app.py +191 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from huggingface_hub import HfApi
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
def format_number(num):
|
| 10 |
+
"""Format large numbers with K, M suffix"""
|
| 11 |
+
if num >= 1e6:
|
| 12 |
+
return f"{num/1e6:.1f}M"
|
| 13 |
+
elif num >= 1e3:
|
| 14 |
+
return f"{num/1e3:.1f}K"
|
| 15 |
+
return str(num)
|
| 16 |
+
|
| 17 |
+
def fetch_stats():
|
| 18 |
+
"""Fetch all DeepSeek model statistics"""
|
| 19 |
+
api = HfApi()
|
| 20 |
+
|
| 21 |
+
# Fetch original models
|
| 22 |
+
original_models = [
|
| 23 |
+
"deepseek-ai/deepseek-r1",
|
| 24 |
+
"deepseek-ai/deepseek-r1-zero",
|
| 25 |
+
"deepseek-ai/deepseek-r1-distill-llama-70b",
|
| 26 |
+
"deepseek-ai/deepseek-r1-distill-qwen-32b",
|
| 27 |
+
"deepseek-ai/deepseek-r1-distill-qwen-14b",
|
| 28 |
+
"deepseek-ai/deepseek-r1-distill-llama-8b",
|
| 29 |
+
"deepseek-ai/deepseek-r1-distill-qwen-7b",
|
| 30 |
+
"deepseek-ai/deepseek-r1-distill-qwen-1.5b"
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
original_stats = []
|
| 34 |
+
for model_id in original_models:
|
| 35 |
+
try:
|
| 36 |
+
info = api.model_info(model_id)
|
| 37 |
+
original_stats.append({
|
| 38 |
+
'model_id': model_id,
|
| 39 |
+
'downloads_30d': info.downloads if hasattr(info, 'downloads') else 0,
|
| 40 |
+
'likes': info.likes if hasattr(info, 'likes') else 0
|
| 41 |
+
})
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error fetching {model_id}: {str(e)}")
|
| 44 |
+
|
| 45 |
+
# Fetch derivative models - using the tag format that works
|
| 46 |
+
model_types = ["adapter", "finetune", "merge", "quantized"]
|
| 47 |
+
base_models = [
|
| 48 |
+
"DeepSeek-R1",
|
| 49 |
+
"DeepSeek-R1-Zero",
|
| 50 |
+
"DeepSeek-R1-Distill-Llama-70B",
|
| 51 |
+
"DeepSeek-R1-Distill-Qwen-32B",
|
| 52 |
+
"DeepSeek-R1-Distill-Qwen-14B",
|
| 53 |
+
"DeepSeek-R1-Distill-Llama-8B",
|
| 54 |
+
"DeepSeek-R1-Distill-Qwen-7B",
|
| 55 |
+
"DeepSeek-R1-Distill-Qwen-1.5B"
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
derivative_stats = []
|
| 59 |
+
|
| 60 |
+
for base_model in base_models:
|
| 61 |
+
for model_type in model_types:
|
| 62 |
+
try:
|
| 63 |
+
# Get models for this type
|
| 64 |
+
models = list(api.list_models(
|
| 65 |
+
filter=f"base_model:{model_type}:deepseek-ai/{base_model}",
|
| 66 |
+
full=True
|
| 67 |
+
))
|
| 68 |
+
|
| 69 |
+
# Add each model to our stats
|
| 70 |
+
for model in models:
|
| 71 |
+
derivative_stats.append({
|
| 72 |
+
'base_model': f"deepseek-ai/{base_model}",
|
| 73 |
+
'model_type': model_type,
|
| 74 |
+
'model_id': model.id,
|
| 75 |
+
'downloads_30d': model.downloads if hasattr(model, 'downloads') else 0,
|
| 76 |
+
'likes': model.likes if hasattr(model, 'likes') else 0
|
| 77 |
+
})
|
| 78 |
+
except Exception as e:
|
| 79 |
+
print(f"Error fetching {model_type} models for {base_model}: {str(e)}")
|
| 80 |
+
|
| 81 |
+
# Create DataFrames
|
| 82 |
+
original_df = pd.DataFrame(original_stats, columns=['model_id', 'downloads_30d', 'likes'])
|
| 83 |
+
derivative_df = pd.DataFrame(derivative_stats, columns=['base_model', 'model_type', 'model_id', 'downloads_30d', 'likes'])
|
| 84 |
+
|
| 85 |
+
return original_df, derivative_df
|
| 86 |
+
|
| 87 |
+
def create_stats_html():
|
| 88 |
+
"""Create HTML for displaying statistics"""
|
| 89 |
+
original_df, derivative_df = fetch_stats()
|
| 90 |
+
|
| 91 |
+
# Create summary statistics
|
| 92 |
+
total_originals = len(original_df)
|
| 93 |
+
total_derivatives = len(derivative_df)
|
| 94 |
+
total_downloads_orig = original_df['downloads_30d'].sum()
|
| 95 |
+
total_downloads_deriv = derivative_df['downloads_30d'].sum()
|
| 96 |
+
|
| 97 |
+
# Create derivative type distribution chart
|
| 98 |
+
if len(derivative_df) > 0:
|
| 99 |
+
# Create distribution by model type
|
| 100 |
+
type_dist = derivative_df.groupby('model_type').agg({
|
| 101 |
+
'model_id': 'count',
|
| 102 |
+
'downloads_30d': 'sum'
|
| 103 |
+
}).reset_index()
|
| 104 |
+
|
| 105 |
+
# Format model types to be more readable
|
| 106 |
+
type_dist['model_type'] = type_dist['model_type'].str.capitalize()
|
| 107 |
+
|
| 108 |
+
# Create bar chart with better formatting
|
| 109 |
+
fig_types = px.bar(
|
| 110 |
+
type_dist,
|
| 111 |
+
x='model_type',
|
| 112 |
+
y='downloads_30d',
|
| 113 |
+
title='Downloads by Model Type',
|
| 114 |
+
labels={
|
| 115 |
+
'downloads_30d': 'Downloads (last 30 days)',
|
| 116 |
+
'model_type': 'Model Type'
|
| 117 |
+
},
|
| 118 |
+
text=type_dist['downloads_30d'].apply(format_number) # Add value labels
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Update layout for better readability
|
| 122 |
+
fig_types.update_traces(textposition='outside')
|
| 123 |
+
fig_types.update_layout(
|
| 124 |
+
uniformtext_minsize=8,
|
| 125 |
+
uniformtext_mode='hide',
|
| 126 |
+
xaxis_tickangle=0,
|
| 127 |
+
yaxis_title="Downloads",
|
| 128 |
+
plot_bgcolor='white',
|
| 129 |
+
bargap=0.3
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
else:
|
| 133 |
+
# Create empty figure if no data
|
| 134 |
+
fig_types = px.bar(title='No data available')
|
| 135 |
+
|
| 136 |
+
# Create top models table
|
| 137 |
+
if len(derivative_df) > 0:
|
| 138 |
+
top_models = derivative_df.nlargest(10, 'downloads_30d')[
|
| 139 |
+
['model_id', 'model_type', 'downloads_30d', 'likes']
|
| 140 |
+
].copy() # Create a copy to avoid SettingWithCopyWarning
|
| 141 |
+
|
| 142 |
+
# Capitalize model types in the table
|
| 143 |
+
top_models['model_type'] = top_models['model_type'].str.capitalize()
|
| 144 |
+
|
| 145 |
+
# Format download numbers
|
| 146 |
+
top_models['downloads_30d'] = top_models['downloads_30d'].apply(format_number)
|
| 147 |
+
else:
|
| 148 |
+
top_models = pd.DataFrame(columns=['model_id', 'model_type', 'downloads_30d', 'likes'])
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Format the summary statistics
|
| 152 |
+
summary_html = f"""
|
| 153 |
+
<div style='padding: 20px; background-color: #f5f5f5; border-radius: 10px; margin-bottom: 20px;'>
|
| 154 |
+
<h3>Summary Statistics</h3>
|
| 155 |
+
<p>Derivative Models Downloads: {format_number(total_downloads_deriv)} ({total_derivatives} models)</p>
|
| 156 |
+
<p>Original Models Downloads: {format_number(total_downloads_orig)} ({total_originals} models)</p>
|
| 157 |
+
<p>Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M UTC')}</p>
|
| 158 |
+
</div>
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
return summary_html, fig_types, top_models
|
| 162 |
+
|
| 163 |
+
def create_interface():
|
| 164 |
+
"""Create Gradio interface"""
|
| 165 |
+
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
| 166 |
+
gr.HTML("<h1 style='text-align: center;'>DeepSeek Models Stats</h1>")
|
| 167 |
+
|
| 168 |
+
with gr.Row():
|
| 169 |
+
with gr.Column():
|
| 170 |
+
summary_html = gr.HTML()
|
| 171 |
+
with gr.Column():
|
| 172 |
+
plot = gr.Plot()
|
| 173 |
+
|
| 174 |
+
with gr.Row():
|
| 175 |
+
table = gr.DataFrame(
|
| 176 |
+
headers=["Model ID", "Type", "Downloads (30d)", "Likes"],
|
| 177 |
+
label="Top 10 Most Downloaded Models"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
def update_stats():
|
| 181 |
+
summary, fig, top_models = create_stats_html()
|
| 182 |
+
return summary, fig, top_models
|
| 183 |
+
|
| 184 |
+
interface.load(update_stats,
|
| 185 |
+
outputs=[summary_html, plot, table])
|
| 186 |
+
|
| 187 |
+
return interface
|
| 188 |
+
|
| 189 |
+
# Create and launch the interface
|
| 190 |
+
demo = create_interface()
|
| 191 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
plotly
|
| 4 |
+
huggingface_hub
|