Spaces:
Runtime error
Runtime error
Update scripts/evaluation/funcs.py
Browse files- scripts/evaluation/funcs.py +241 -240
scripts/evaluation/funcs.py
CHANGED
|
@@ -1,240 +1,241 @@
|
|
| 1 |
-
import os, sys, glob
|
| 2 |
-
import numpy as np
|
| 3 |
-
from collections import OrderedDict
|
| 4 |
-
from decord import VideoReader, cpu
|
| 5 |
-
import cv2
|
| 6 |
-
|
| 7 |
-
import torch
|
| 8 |
-
import torchvision
|
| 9 |
-
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
| 10 |
-
from lvdm.models.samplers.ddim import DDIMSampler
|
| 11 |
-
from einops import rearrange
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
| 15 |
-
cfg_scale=1.0, hs=None, temporal_cfg_scale=None, **kwargs):
|
| 16 |
-
ddim_sampler = DDIMSampler(model)
|
| 17 |
-
uncond_type = model.uncond_type
|
| 18 |
-
batch_size = noise_shape[0]
|
| 19 |
-
fs = cond["fs"]
|
| 20 |
-
del cond["fs"]
|
| 21 |
-
if noise_shape[-1] == 32:
|
| 22 |
-
timestep_spacing = "uniform"
|
| 23 |
-
guidance_rescale = 0.0
|
| 24 |
-
else:
|
| 25 |
-
timestep_spacing = "uniform_trailing"
|
| 26 |
-
guidance_rescale = 0.7
|
| 27 |
-
## construct unconditional guidance
|
| 28 |
-
if cfg_scale != 1.0:
|
| 29 |
-
if uncond_type == "empty_seq":
|
| 30 |
-
prompts = batch_size * [""]
|
| 31 |
-
#prompts = N * T * [""] ## if is_imgbatch=True
|
| 32 |
-
uc_emb = model.get_learned_conditioning(prompts)
|
| 33 |
-
elif uncond_type == "zero_embed":
|
| 34 |
-
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
|
| 35 |
-
uc_emb = torch.zeros_like(c_emb)
|
| 36 |
-
|
| 37 |
-
## process image embedding token
|
| 38 |
-
if hasattr(model, 'embedder'):
|
| 39 |
-
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device)
|
| 40 |
-
## img: b c h w >> b l c
|
| 41 |
-
uc_img = model.embedder(uc_img)
|
| 42 |
-
uc_img = model.image_proj_model(uc_img)
|
| 43 |
-
uc_emb = torch.cat([uc_emb, uc_img], dim=1)
|
| 44 |
-
|
| 45 |
-
if isinstance(cond, dict):
|
| 46 |
-
uc = {key:cond[key] for key in cond.keys()}
|
| 47 |
-
uc.update({'c_crossattn': [uc_emb]})
|
| 48 |
-
else:
|
| 49 |
-
uc = uc_emb
|
| 50 |
-
else:
|
| 51 |
-
uc = None
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
additional_decode_kwargs = {'ref_context': hs}
|
| 55 |
-
x_T = None
|
| 56 |
-
batch_variants = []
|
| 57 |
-
|
| 58 |
-
for _ in range(n_samples):
|
| 59 |
-
if ddim_sampler is not None:
|
| 60 |
-
kwargs.update({"clean_cond": True})
|
| 61 |
-
samples, _ = ddim_sampler.sample(S=ddim_steps,
|
| 62 |
-
conditioning=cond,
|
| 63 |
-
batch_size=noise_shape[0],
|
| 64 |
-
shape=noise_shape[1:],
|
| 65 |
-
verbose=False,
|
| 66 |
-
unconditional_guidance_scale=cfg_scale,
|
| 67 |
-
unconditional_conditioning=uc,
|
| 68 |
-
eta=ddim_eta,
|
| 69 |
-
temporal_length=noise_shape[2],
|
| 70 |
-
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
| 71 |
-
x_T=x_T,
|
| 72 |
-
fs=fs,
|
| 73 |
-
timestep_spacing=timestep_spacing,
|
| 74 |
-
guidance_rescale=guidance_rescale,
|
| 75 |
-
**kwargs
|
| 76 |
-
)
|
| 77 |
-
## reconstruct from latent to pixel space
|
| 78 |
-
batch_images = model.decode_first_stage(samples, **additional_decode_kwargs)
|
| 79 |
-
|
| 80 |
-
index = list(range(samples.shape[2]))
|
| 81 |
-
del index[1]
|
| 82 |
-
del index[-2]
|
| 83 |
-
samples = samples[:,:,index,:,:]
|
| 84 |
-
## reconstruct from latent to pixel space
|
| 85 |
-
batch_images_middle = model.decode_first_stage(samples, **additional_decode_kwargs)
|
| 86 |
-
batch_images[:,:,batch_images.shape[2]//2-1:batch_images.shape[2]//2+1] = batch_images_middle[:,:,batch_images.shape[2]//2-2:batch_images.shape[2]//2]
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
batch_variants.append(batch_images)
|
| 91 |
-
## batch, <samples>, c, t, h, w
|
| 92 |
-
batch_variants = torch.stack(batch_variants, dim=1)
|
| 93 |
-
return batch_variants
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def get_filelist(data_dir, ext='*'):
|
| 97 |
-
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
|
| 98 |
-
file_list.sort()
|
| 99 |
-
return file_list
|
| 100 |
-
|
| 101 |
-
def get_dirlist(path):
|
| 102 |
-
list = []
|
| 103 |
-
if (os.path.exists(path)):
|
| 104 |
-
files = os.listdir(path)
|
| 105 |
-
for file in files:
|
| 106 |
-
m = os.path.join(path,file)
|
| 107 |
-
if (os.path.isdir(m)):
|
| 108 |
-
list.append(m)
|
| 109 |
-
list.sort()
|
| 110 |
-
return list
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
def load_model_checkpoint(model, ckpt):
|
| 114 |
-
def load_checkpoint(model, ckpt, full_strict):
|
| 115 |
-
state_dict = torch.load(ckpt, map_location="cpu")
|
| 116 |
-
if "state_dict" in list(state_dict.keys()):
|
| 117 |
-
state_dict = state_dict["state_dict"]
|
| 118 |
-
try:
|
| 119 |
-
model.load_state_dict(state_dict, strict=full_strict)
|
| 120 |
-
except:
|
| 121 |
-
## rename the keys for 256x256 model
|
| 122 |
-
new_pl_sd = OrderedDict()
|
| 123 |
-
for k,v in state_dict.items():
|
| 124 |
-
new_pl_sd[k] = v
|
| 125 |
-
|
| 126 |
-
for k in list(new_pl_sd.keys()):
|
| 127 |
-
if "framestride_embed" in k:
|
| 128 |
-
new_key = k.replace("framestride_embed", "fps_embedding")
|
| 129 |
-
new_pl_sd[new_key] = new_pl_sd[k]
|
| 130 |
-
del new_pl_sd[k]
|
| 131 |
-
model.load_state_dict(new_pl_sd, strict=full_strict)
|
| 132 |
-
else:
|
| 133 |
-
## deepspeed
|
| 134 |
-
new_pl_sd = OrderedDict()
|
| 135 |
-
for key in state_dict['module'].keys():
|
| 136 |
-
new_pl_sd[key[16:]]=state_dict['module'][key]
|
| 137 |
-
model.load_state_dict(new_pl_sd, strict=full_strict)
|
| 138 |
-
|
| 139 |
-
return model
|
| 140 |
-
load_checkpoint(model, ckpt, full_strict=True)
|
| 141 |
-
print('>>> model checkpoint loaded.')
|
| 142 |
-
return model
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def load_prompts(prompt_file):
|
| 146 |
-
f = open(prompt_file, 'r')
|
| 147 |
-
prompt_list = []
|
| 148 |
-
for idx, line in enumerate(f.readlines()):
|
| 149 |
-
l = line.strip()
|
| 150 |
-
if len(l) != 0:
|
| 151 |
-
prompt_list.append(l)
|
| 152 |
-
f.close()
|
| 153 |
-
return prompt_list
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
|
| 157 |
-
'''
|
| 158 |
-
Notice about some special cases:
|
| 159 |
-
1. video_frames=-1 means to take all the frames (with fs=1)
|
| 160 |
-
2. when the total video frames is less than required, padding strategy will be used (repeated last frame)
|
| 161 |
-
'''
|
| 162 |
-
fps_list = []
|
| 163 |
-
batch_tensor = []
|
| 164 |
-
assert frame_stride > 0, "valid frame stride should be a positive interge!"
|
| 165 |
-
for filepath in filepath_list:
|
| 166 |
-
padding_num = 0
|
| 167 |
-
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
|
| 168 |
-
fps = vidreader.get_avg_fps()
|
| 169 |
-
total_frames = len(vidreader)
|
| 170 |
-
max_valid_frames = (total_frames-1) // frame_stride + 1
|
| 171 |
-
if video_frames < 0:
|
| 172 |
-
## all frames are collected: fs=1 is a must
|
| 173 |
-
required_frames = total_frames
|
| 174 |
-
frame_stride = 1
|
| 175 |
-
else:
|
| 176 |
-
required_frames = video_frames
|
| 177 |
-
query_frames = min(required_frames, max_valid_frames)
|
| 178 |
-
frame_indices = [frame_stride*i for i in range(query_frames)]
|
| 179 |
-
|
| 180 |
-
## [t,h,w,c] -> [c,t,h,w]
|
| 181 |
-
frames = vidreader.get_batch(frame_indices)
|
| 182 |
-
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
|
| 183 |
-
frame_tensor = (frame_tensor / 255. - 0.5) * 2
|
| 184 |
-
if max_valid_frames < required_frames:
|
| 185 |
-
padding_num = required_frames - max_valid_frames
|
| 186 |
-
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
|
| 187 |
-
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
|
| 188 |
-
batch_tensor.append(frame_tensor)
|
| 189 |
-
sample_fps = int(fps/frame_stride)
|
| 190 |
-
fps_list.append(sample_fps)
|
| 191 |
-
|
| 192 |
-
return torch.stack(batch_tensor, dim=0)
|
| 193 |
-
|
| 194 |
-
from PIL import Image
|
| 195 |
-
def load_image_batch(filepath_list, image_size=(256,256)):
|
| 196 |
-
batch_tensor = []
|
| 197 |
-
for filepath in filepath_list:
|
| 198 |
-
_, filename = os.path.split(filepath)
|
| 199 |
-
_, ext = os.path.splitext(filename)
|
| 200 |
-
if ext == '.mp4':
|
| 201 |
-
vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0])
|
| 202 |
-
frame = vidreader.get_batch([0])
|
| 203 |
-
img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float()
|
| 204 |
-
elif ext == '.png' or ext == '.jpg':
|
| 205 |
-
img = Image.open(filepath).convert("RGB")
|
| 206 |
-
rgb_img = np.array(img, np.float32)
|
| 207 |
-
#bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR)
|
| 208 |
-
#bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
| 209 |
-
rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR)
|
| 210 |
-
img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float()
|
| 211 |
-
else:
|
| 212 |
-
print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]')
|
| 213 |
-
raise NotImplementedError
|
| 214 |
-
img_tensor = (img_tensor / 255. - 0.5) * 2
|
| 215 |
-
batch_tensor.append(img_tensor)
|
| 216 |
-
return torch.stack(batch_tensor, dim=0)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def save_videos(batch_tensors, savedir, filenames, fps=10):
|
| 220 |
-
# b,samples,c,t,h,w
|
| 221 |
-
n_samples = batch_tensors.shape[1]
|
| 222 |
-
for idx, vid_tensor in enumerate(batch_tensors):
|
| 223 |
-
video = vid_tensor.detach().cpu()
|
| 224 |
-
video = torch.clamp(video.float(), -1., 1.)
|
| 225 |
-
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
|
| 226 |
-
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
|
| 227 |
-
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
|
| 228 |
-
grid = (grid + 1.0) / 2.0
|
| 229 |
-
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
| 230 |
-
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
z =
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
| 1 |
+
import os, sys, glob
|
| 2 |
+
import numpy as np
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from decord import VideoReader, cpu
|
| 5 |
+
import cv2
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torchvision
|
| 9 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
| 10 |
+
from lvdm.models.samplers.ddim import DDIMSampler
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
| 15 |
+
cfg_scale=1.0, hs=None, temporal_cfg_scale=None, **kwargs):
|
| 16 |
+
ddim_sampler = DDIMSampler(model)
|
| 17 |
+
uncond_type = model.uncond_type
|
| 18 |
+
batch_size = noise_shape[0]
|
| 19 |
+
fs = cond["fs"]
|
| 20 |
+
del cond["fs"]
|
| 21 |
+
if noise_shape[-1] == 32:
|
| 22 |
+
timestep_spacing = "uniform"
|
| 23 |
+
guidance_rescale = 0.0
|
| 24 |
+
else:
|
| 25 |
+
timestep_spacing = "uniform_trailing"
|
| 26 |
+
guidance_rescale = 0.7
|
| 27 |
+
## construct unconditional guidance
|
| 28 |
+
if cfg_scale != 1.0:
|
| 29 |
+
if uncond_type == "empty_seq":
|
| 30 |
+
prompts = batch_size * [""]
|
| 31 |
+
#prompts = N * T * [""] ## if is_imgbatch=True
|
| 32 |
+
uc_emb = model.get_learned_conditioning(prompts)
|
| 33 |
+
elif uncond_type == "zero_embed":
|
| 34 |
+
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
|
| 35 |
+
uc_emb = torch.zeros_like(c_emb)
|
| 36 |
+
|
| 37 |
+
## process image embedding token
|
| 38 |
+
if hasattr(model, 'embedder'):
|
| 39 |
+
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device)
|
| 40 |
+
## img: b c h w >> b l c
|
| 41 |
+
uc_img = model.embedder(uc_img)
|
| 42 |
+
uc_img = model.image_proj_model(uc_img)
|
| 43 |
+
uc_emb = torch.cat([uc_emb, uc_img], dim=1)
|
| 44 |
+
|
| 45 |
+
if isinstance(cond, dict):
|
| 46 |
+
uc = {key:cond[key] for key in cond.keys()}
|
| 47 |
+
uc.update({'c_crossattn': [uc_emb]})
|
| 48 |
+
else:
|
| 49 |
+
uc = uc_emb
|
| 50 |
+
else:
|
| 51 |
+
uc = None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
additional_decode_kwargs = {'ref_context': hs}
|
| 55 |
+
x_T = None
|
| 56 |
+
batch_variants = []
|
| 57 |
+
|
| 58 |
+
for _ in range(n_samples):
|
| 59 |
+
if ddim_sampler is not None:
|
| 60 |
+
kwargs.update({"clean_cond": True})
|
| 61 |
+
samples, _ = ddim_sampler.sample(S=ddim_steps,
|
| 62 |
+
conditioning=cond,
|
| 63 |
+
batch_size=noise_shape[0],
|
| 64 |
+
shape=noise_shape[1:],
|
| 65 |
+
verbose=False,
|
| 66 |
+
unconditional_guidance_scale=cfg_scale,
|
| 67 |
+
unconditional_conditioning=uc,
|
| 68 |
+
eta=ddim_eta,
|
| 69 |
+
temporal_length=noise_shape[2],
|
| 70 |
+
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
| 71 |
+
x_T=x_T,
|
| 72 |
+
fs=fs,
|
| 73 |
+
timestep_spacing=timestep_spacing,
|
| 74 |
+
guidance_rescale=guidance_rescale,
|
| 75 |
+
**kwargs
|
| 76 |
+
)
|
| 77 |
+
## reconstruct from latent to pixel space
|
| 78 |
+
batch_images = model.decode_first_stage(samples, **additional_decode_kwargs)
|
| 79 |
+
|
| 80 |
+
index = list(range(samples.shape[2]))
|
| 81 |
+
del index[1]
|
| 82 |
+
del index[-2]
|
| 83 |
+
samples = samples[:,:,index,:,:]
|
| 84 |
+
## reconstruct from latent to pixel space
|
| 85 |
+
batch_images_middle = model.decode_first_stage(samples, **additional_decode_kwargs)
|
| 86 |
+
batch_images[:,:,batch_images.shape[2]//2-1:batch_images.shape[2]//2+1] = batch_images_middle[:,:,batch_images.shape[2]//2-2:batch_images.shape[2]//2]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
batch_variants.append(batch_images)
|
| 91 |
+
## batch, <samples>, c, t, h, w
|
| 92 |
+
batch_variants = torch.stack(batch_variants, dim=1)
|
| 93 |
+
return batch_variants
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_filelist(data_dir, ext='*'):
|
| 97 |
+
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
|
| 98 |
+
file_list.sort()
|
| 99 |
+
return file_list
|
| 100 |
+
|
| 101 |
+
def get_dirlist(path):
|
| 102 |
+
list = []
|
| 103 |
+
if (os.path.exists(path)):
|
| 104 |
+
files = os.listdir(path)
|
| 105 |
+
for file in files:
|
| 106 |
+
m = os.path.join(path,file)
|
| 107 |
+
if (os.path.isdir(m)):
|
| 108 |
+
list.append(m)
|
| 109 |
+
list.sort()
|
| 110 |
+
return list
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def load_model_checkpoint(model, ckpt):
|
| 114 |
+
def load_checkpoint(model, ckpt, full_strict):
|
| 115 |
+
state_dict = torch.load(ckpt, map_location="cpu")
|
| 116 |
+
if "state_dict" in list(state_dict.keys()):
|
| 117 |
+
state_dict = state_dict["state_dict"]
|
| 118 |
+
try:
|
| 119 |
+
model.load_state_dict(state_dict, strict=full_strict)
|
| 120 |
+
except:
|
| 121 |
+
## rename the keys for 256x256 model
|
| 122 |
+
new_pl_sd = OrderedDict()
|
| 123 |
+
for k,v in state_dict.items():
|
| 124 |
+
new_pl_sd[k] = v
|
| 125 |
+
|
| 126 |
+
for k in list(new_pl_sd.keys()):
|
| 127 |
+
if "framestride_embed" in k:
|
| 128 |
+
new_key = k.replace("framestride_embed", "fps_embedding")
|
| 129 |
+
new_pl_sd[new_key] = new_pl_sd[k]
|
| 130 |
+
del new_pl_sd[k]
|
| 131 |
+
model.load_state_dict(new_pl_sd, strict=full_strict)
|
| 132 |
+
else:
|
| 133 |
+
## deepspeed
|
| 134 |
+
new_pl_sd = OrderedDict()
|
| 135 |
+
for key in state_dict['module'].keys():
|
| 136 |
+
new_pl_sd[key[16:]]=state_dict['module'][key]
|
| 137 |
+
model.load_state_dict(new_pl_sd, strict=full_strict)
|
| 138 |
+
|
| 139 |
+
return model
|
| 140 |
+
load_checkpoint(model, ckpt, full_strict=True)
|
| 141 |
+
print('>>> model checkpoint loaded.')
|
| 142 |
+
return model
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def load_prompts(prompt_file):
|
| 146 |
+
f = open(prompt_file, 'r')
|
| 147 |
+
prompt_list = []
|
| 148 |
+
for idx, line in enumerate(f.readlines()):
|
| 149 |
+
l = line.strip()
|
| 150 |
+
if len(l) != 0:
|
| 151 |
+
prompt_list.append(l)
|
| 152 |
+
f.close()
|
| 153 |
+
return prompt_list
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
|
| 157 |
+
'''
|
| 158 |
+
Notice about some special cases:
|
| 159 |
+
1. video_frames=-1 means to take all the frames (with fs=1)
|
| 160 |
+
2. when the total video frames is less than required, padding strategy will be used (repeated last frame)
|
| 161 |
+
'''
|
| 162 |
+
fps_list = []
|
| 163 |
+
batch_tensor = []
|
| 164 |
+
assert frame_stride > 0, "valid frame stride should be a positive interge!"
|
| 165 |
+
for filepath in filepath_list:
|
| 166 |
+
padding_num = 0
|
| 167 |
+
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
|
| 168 |
+
fps = vidreader.get_avg_fps()
|
| 169 |
+
total_frames = len(vidreader)
|
| 170 |
+
max_valid_frames = (total_frames-1) // frame_stride + 1
|
| 171 |
+
if video_frames < 0:
|
| 172 |
+
## all frames are collected: fs=1 is a must
|
| 173 |
+
required_frames = total_frames
|
| 174 |
+
frame_stride = 1
|
| 175 |
+
else:
|
| 176 |
+
required_frames = video_frames
|
| 177 |
+
query_frames = min(required_frames, max_valid_frames)
|
| 178 |
+
frame_indices = [frame_stride*i for i in range(query_frames)]
|
| 179 |
+
|
| 180 |
+
## [t,h,w,c] -> [c,t,h,w]
|
| 181 |
+
frames = vidreader.get_batch(frame_indices)
|
| 182 |
+
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
|
| 183 |
+
frame_tensor = (frame_tensor / 255. - 0.5) * 2
|
| 184 |
+
if max_valid_frames < required_frames:
|
| 185 |
+
padding_num = required_frames - max_valid_frames
|
| 186 |
+
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
|
| 187 |
+
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
|
| 188 |
+
batch_tensor.append(frame_tensor)
|
| 189 |
+
sample_fps = int(fps/frame_stride)
|
| 190 |
+
fps_list.append(sample_fps)
|
| 191 |
+
|
| 192 |
+
return torch.stack(batch_tensor, dim=0)
|
| 193 |
+
|
| 194 |
+
from PIL import Image
|
| 195 |
+
def load_image_batch(filepath_list, image_size=(256,256)):
|
| 196 |
+
batch_tensor = []
|
| 197 |
+
for filepath in filepath_list:
|
| 198 |
+
_, filename = os.path.split(filepath)
|
| 199 |
+
_, ext = os.path.splitext(filename)
|
| 200 |
+
if ext == '.mp4':
|
| 201 |
+
vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0])
|
| 202 |
+
frame = vidreader.get_batch([0])
|
| 203 |
+
img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float()
|
| 204 |
+
elif ext == '.png' or ext == '.jpg':
|
| 205 |
+
img = Image.open(filepath).convert("RGB")
|
| 206 |
+
rgb_img = np.array(img, np.float32)
|
| 207 |
+
#bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR)
|
| 208 |
+
#bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
| 209 |
+
rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR)
|
| 210 |
+
img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float()
|
| 211 |
+
else:
|
| 212 |
+
print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]')
|
| 213 |
+
raise NotImplementedError
|
| 214 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
| 215 |
+
batch_tensor.append(img_tensor)
|
| 216 |
+
return torch.stack(batch_tensor, dim=0)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def save_videos(batch_tensors, savedir, filenames, fps=10):
|
| 220 |
+
# b,samples,c,t,h,w
|
| 221 |
+
n_samples = batch_tensors.shape[1]
|
| 222 |
+
for idx, vid_tensor in enumerate(batch_tensors):
|
| 223 |
+
video = vid_tensor.detach().cpu()
|
| 224 |
+
video = torch.clamp(video.float(), -1., 1.)
|
| 225 |
+
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
|
| 226 |
+
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
|
| 227 |
+
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
|
| 228 |
+
grid = (grid + 1.0) / 2.0
|
| 229 |
+
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
| 230 |
+
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
|
| 231 |
+
print("saving path:", savepath)
|
| 232 |
+
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def get_latent_z(model, videos):
|
| 236 |
+
b, c, t, h, w = videos.shape
|
| 237 |
+
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
| 238 |
+
z = model.encode_first_stage(x)
|
| 239 |
+
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
| 240 |
+
return z
|
| 241 |
+
|