Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# PowerThought FastAPI Chat Server
|
2 |
-
# Requirements: pip install fastapi transformers torch gradio uvicorn accelerate
|
|
|
3 |
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
@@ -24,51 +25,100 @@ app.add_middleware(
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
-
MODEL_ID = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
29 |
|
30 |
-
# Load model and tokenizer with
|
31 |
print("Loading model...")
|
32 |
-
pipe = None
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
|
|
59 |
pipe = pipeline(
|
60 |
"text-generation",
|
61 |
-
model=
|
62 |
-
|
63 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
64 |
-
trust_remote_code=True
|
65 |
)
|
66 |
tokenizer = pipe.tokenizer
|
67 |
model = pipe.model
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
raise Exception(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# PowerThought System Prompt
|
74 |
POWERTHOUGHT_SYSTEM_PROMPT = """You are PowerThought, a strategic advisor who transforms the 48 Laws of Power into ethical, constructive guidance. You help people navigate complex situations using timeless wisdom while maintaining integrity and building positive relationships.
|
@@ -299,9 +349,9 @@ def generate_response(conversation_history, max_new_tokens=1500):
|
|
299 |
try:
|
300 |
messages = build_messages(conversation_history)
|
301 |
|
302 |
-
# Check if we're using pipeline
|
303 |
if pipe is not None:
|
304 |
-
#
|
305 |
response = pipe(
|
306 |
messages,
|
307 |
max_new_tokens=max_new_tokens,
|
@@ -313,14 +363,26 @@ def generate_response(conversation_history, max_new_tokens=1500):
|
|
313 |
)
|
314 |
return response[0]['generated_text'].strip()
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
#
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
# Tokenize
|
326 |
inputs = tokenizer(text, return_tensors="pt").to(device)
|
@@ -334,7 +396,8 @@ def generate_response(conversation_history, max_new_tokens=1500):
|
|
334 |
temperature=0.7,
|
335 |
top_p=0.9,
|
336 |
repetition_penalty=1.05,
|
337 |
-
pad_token_id=tokenizer.eos_token_id
|
|
|
338 |
)
|
339 |
|
340 |
# Decode only the new tokens
|
@@ -344,6 +407,32 @@ def generate_response(conversation_history, max_new_tokens=1500):
|
|
344 |
)
|
345 |
|
346 |
return generated_text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
except Exception as e:
|
349 |
logger.error(f"Generation error: {str(e)}")
|
|
|
1 |
# PowerThought FastAPI Chat Server
|
2 |
+
# Requirements: pip install fastapi transformers torch gradio uvicorn accelerate
|
3 |
+
# Optional for GPU quantization: pip install bitsandbytes
|
4 |
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
25 |
allow_headers=["*"],
|
26 |
)
|
27 |
|
28 |
+
MODEL_ID = "microsoft/DialoGPT-large" # Fallback reliable model
|
29 |
+
PREFERRED_MODEL = "unsloth/DeepSeek-R1-0528-Qwen3-8B-bnb-4bit" # Preferred but needs GPU
|
30 |
+
FALLBACK_MODELS = [
|
31 |
+
"microsoft/DialoGPT-medium",
|
32 |
+
"microsoft/DialoGPT-small",
|
33 |
+
"gpt2"
|
34 |
+
]
|
35 |
+
|
36 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
print(f"Device detected: {device}")
|
38 |
|
39 |
+
# Load model and tokenizer with multiple fallbacks
|
40 |
print("Loading model...")
|
41 |
+
pipe = None
|
42 |
+
model = None
|
43 |
+
tokenizer = None
|
44 |
+
current_model = None
|
45 |
+
|
46 |
+
def try_load_model(model_id, use_quantization=False):
|
47 |
+
"""Try to load a specific model"""
|
48 |
+
try:
|
49 |
+
print(f"Attempting to load: {model_id}")
|
50 |
+
|
51 |
+
if use_quantization and torch.cuda.is_available():
|
52 |
+
# Try quantized version on GPU
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
54 |
+
model_id,
|
55 |
+
trust_remote_code=True,
|
56 |
+
use_fast=True
|
57 |
+
)
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
model_id,
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
device_map="auto",
|
62 |
+
trust_remote_code=True
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
# Try regular version
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
67 |
+
model_id,
|
68 |
+
trust_remote_code=True
|
69 |
+
)
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
model_id,
|
72 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
73 |
+
trust_remote_code=True
|
74 |
+
).to(device)
|
75 |
+
|
76 |
+
# Add pad token if needed
|
77 |
+
if tokenizer.pad_token is None:
|
78 |
+
tokenizer.pad_token = tokenizer.eos_token
|
79 |
+
|
80 |
+
return tokenizer, model, model_id
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Failed to load {model_id}: {e}")
|
84 |
+
return None, None, None
|
85 |
+
|
86 |
+
# Try preferred model first (with quantization if GPU available)
|
87 |
+
if torch.cuda.is_available():
|
88 |
+
tokenizer, model, current_model = try_load_model(PREFERRED_MODEL, use_quantization=True)
|
89 |
+
|
90 |
+
# If that failed, try regular DeepSeek
|
91 |
+
if model is None:
|
92 |
+
tokenizer, model, current_model = try_load_model("deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", use_quantization=False)
|
93 |
+
|
94 |
+
# If that failed, try fallback models
|
95 |
+
if model is None:
|
96 |
+
for fallback_model in FALLBACK_MODELS:
|
97 |
+
tokenizer, model, current_model = try_load_model(fallback_model, use_quantization=False)
|
98 |
+
if model is not None:
|
99 |
+
break
|
100 |
+
|
101 |
+
# Final fallback to pipeline method with GPT-2
|
102 |
+
if model is None:
|
103 |
try:
|
104 |
+
print("Using pipeline fallback with GPT-2...")
|
105 |
pipe = pipeline(
|
106 |
"text-generation",
|
107 |
+
model="gpt2",
|
108 |
+
tokenizer="gpt2"
|
|
|
|
|
109 |
)
|
110 |
tokenizer = pipe.tokenizer
|
111 |
model = pipe.model
|
112 |
+
current_model = "gpt2"
|
113 |
+
print("Pipeline with GPT-2 loaded successfully!")
|
114 |
+
except Exception as e:
|
115 |
+
raise Exception(f"All loading methods failed. Last error: {e}")
|
116 |
+
|
117 |
+
if model is not None:
|
118 |
+
MODEL_ID = current_model # Update MODEL_ID to reflect what actually loaded
|
119 |
+
print(f"Successfully loaded: {MODEL_ID}")
|
120 |
+
else:
|
121 |
+
raise Exception("Failed to load any model")
|
122 |
|
123 |
# PowerThought System Prompt
|
124 |
POWERTHOUGHT_SYSTEM_PROMPT = """You are PowerThought, a strategic advisor who transforms the 48 Laws of Power into ethical, constructive guidance. You help people navigate complex situations using timeless wisdom while maintaining integrity and building positive relationships.
|
|
|
349 |
try:
|
350 |
messages = build_messages(conversation_history)
|
351 |
|
352 |
+
# Check if we're using pipeline
|
353 |
if pipe is not None:
|
354 |
+
# For pipeline method
|
355 |
response = pipe(
|
356 |
messages,
|
357 |
max_new_tokens=max_new_tokens,
|
|
|
363 |
)
|
364 |
return response[0]['generated_text'].strip()
|
365 |
|
366 |
+
# For direct model method
|
367 |
+
try:
|
368 |
+
# Try chat template first (for modern models)
|
369 |
+
if hasattr(tokenizer, 'apply_chat_template') and tokenizer.chat_template:
|
370 |
+
text = tokenizer.apply_chat_template(
|
371 |
+
messages,
|
372 |
+
tokenize=False,
|
373 |
+
add_generation_prompt=True
|
374 |
+
)
|
375 |
+
else:
|
376 |
+
# Fallback for older models (like DialoGPT, GPT-2)
|
377 |
+
text = ""
|
378 |
+
for msg in messages:
|
379 |
+
if msg["role"] == "system":
|
380 |
+
text += f"System: {msg['content']}\n\n"
|
381 |
+
elif msg["role"] == "user":
|
382 |
+
text += f"User: {msg['content']}\n"
|
383 |
+
elif msg["role"] == "assistant":
|
384 |
+
text += f"Assistant: {msg['content']}\n"
|
385 |
+
text += "Assistant: "
|
386 |
|
387 |
# Tokenize
|
388 |
inputs = tokenizer(text, return_tensors="pt").to(device)
|
|
|
396 |
temperature=0.7,
|
397 |
top_p=0.9,
|
398 |
repetition_penalty=1.05,
|
399 |
+
pad_token_id=tokenizer.eos_token_id,
|
400 |
+
eos_token_id=tokenizer.eos_token_id
|
401 |
)
|
402 |
|
403 |
# Decode only the new tokens
|
|
|
407 |
)
|
408 |
|
409 |
return generated_text.strip()
|
410 |
+
|
411 |
+
except Exception as e:
|
412 |
+
logger.error(f"Chat template failed, using simple concatenation: {e}")
|
413 |
+
|
414 |
+
# Simple fallback - just concatenate the last user message with system prompt
|
415 |
+
full_text = f"{POWERTHOUGHT_SYSTEM_PROMPT}\n\nUser: {conversation_history[-1]['content']}\nAssistant: "
|
416 |
+
|
417 |
+
inputs = tokenizer(full_text, return_tensors="pt").to(device)
|
418 |
+
|
419 |
+
with torch.no_grad():
|
420 |
+
generated_ids = model.generate(
|
421 |
+
**inputs,
|
422 |
+
max_new_tokens=max_new_tokens,
|
423 |
+
do_sample=True,
|
424 |
+
temperature=0.7,
|
425 |
+
top_p=0.9,
|
426 |
+
repetition_penalty=1.05,
|
427 |
+
pad_token_id=tokenizer.eos_token_id
|
428 |
+
)
|
429 |
+
|
430 |
+
generated_text = tokenizer.decode(
|
431 |
+
generated_ids[0][inputs.input_ids.shape[-1]:],
|
432 |
+
skip_special_tokens=True
|
433 |
+
)
|
434 |
+
|
435 |
+
return generated_text.strip()
|
436 |
|
437 |
except Exception as e:
|
438 |
logger.error(f"Generation error: {str(e)}")
|