Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
import logging
|
7 |
import gradio as gr
|
@@ -21,14 +24,51 @@ app.add_middleware(
|
|
21 |
allow_headers=["*"],
|
22 |
)
|
23 |
|
24 |
-
MODEL_ID = "unsloth/DeepSeek-R1-0528-Qwen3-8B-
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
|
27 |
-
# Load model and tokenizer
|
28 |
print("Loading model...")
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# PowerThought System Prompt
|
34 |
POWERTHOUGHT_SYSTEM_PROMPT = """You are PowerThought, a strategic advisor who transforms the 48 Laws of Power into ethical, constructive guidance. You help people navigate complex situations using timeless wisdom while maintaining integrity and building positive relationships.
|
@@ -259,35 +299,51 @@ def generate_response(conversation_history, max_new_tokens=1500):
|
|
259 |
try:
|
260 |
messages = build_messages(conversation_history)
|
261 |
|
262 |
-
#
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
)
|
268 |
-
|
269 |
-
# Tokenize
|
270 |
-
inputs = tokenizer(text, return_tensors="pt").to(device)
|
271 |
-
|
272 |
-
# Generate
|
273 |
-
with torch.no_grad():
|
274 |
-
generated_ids = model.generate(
|
275 |
-
**inputs,
|
276 |
max_new_tokens=max_new_tokens,
|
277 |
do_sample=True,
|
278 |
temperature=0.7,
|
279 |
top_p=0.9,
|
280 |
repetition_penalty=1.05,
|
281 |
-
|
282 |
)
|
|
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
except Exception as e:
|
293 |
logger.error(f"Generation error: {str(e)}")
|
@@ -305,7 +361,13 @@ async def chat_endpoint(request: ChatRequest):
|
|
305 |
|
306 |
@app.get("/api/health")
|
307 |
async def health_check():
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
# Gradio interface function
|
311 |
def gradio_chat(message, history):
|
|
|
1 |
+
# PowerThought FastAPI Chat Server
|
2 |
+
# Requirements: pip install fastapi transformers torch gradio uvicorn accelerate bitsandbytes
|
3 |
+
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from pydantic import BaseModel
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
8 |
import torch
|
9 |
import logging
|
10 |
import gradio as gr
|
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
+
MODEL_ID = "unsloth/DeepSeek-R1-0528-Qwen3-8B-bnb-4bit"
|
28 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
|
30 |
+
# Load model and tokenizer with better error handling
|
31 |
print("Loading model...")
|
32 |
+
pipe = None # Initialize pipeline variable
|
33 |
+
|
34 |
+
try:
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
MODEL_ID,
|
37 |
+
trust_remote_code=True,
|
38 |
+
use_fast=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# Add pad token if it doesn't exist
|
42 |
+
if tokenizer.pad_token is None:
|
43 |
+
tokenizer.pad_token = tokenizer.eos_token
|
44 |
+
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
MODEL_ID,
|
47 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
48 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
49 |
+
trust_remote_code=True
|
50 |
+
)
|
51 |
+
print("Model loaded successfully!")
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error loading model: {e}")
|
55 |
+
print("Falling back to pipeline method...")
|
56 |
+
|
57 |
+
# Fallback to pipeline method
|
58 |
+
try:
|
59 |
+
pipe = pipeline(
|
60 |
+
"text-generation",
|
61 |
+
model=MODEL_ID,
|
62 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
63 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
64 |
+
trust_remote_code=True
|
65 |
+
)
|
66 |
+
tokenizer = pipe.tokenizer
|
67 |
+
model = pipe.model
|
68 |
+
print("Pipeline fallback loaded successfully!")
|
69 |
+
except Exception as e2:
|
70 |
+
print(f"Pipeline fallback also failed: {e2}")
|
71 |
+
raise Exception(f"Both loading methods failed: {e}, {e2}")
|
72 |
|
73 |
# PowerThought System Prompt
|
74 |
POWERTHOUGHT_SYSTEM_PROMPT = """You are PowerThought, a strategic advisor who transforms the 48 Laws of Power into ethical, constructive guidance. You help people navigate complex situations using timeless wisdom while maintaining integrity and building positive relationships.
|
|
|
299 |
try:
|
300 |
messages = build_messages(conversation_history)
|
301 |
|
302 |
+
# Check if we're using pipeline or direct model
|
303 |
+
if pipe is not None:
|
304 |
+
# Using pipeline method
|
305 |
+
response = pipe(
|
306 |
+
messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
max_new_tokens=max_new_tokens,
|
308 |
do_sample=True,
|
309 |
temperature=0.7,
|
310 |
top_p=0.9,
|
311 |
repetition_penalty=1.05,
|
312 |
+
return_full_text=False
|
313 |
)
|
314 |
+
return response[0]['generated_text'].strip()
|
315 |
|
316 |
+
else:
|
317 |
+
# Using direct model method
|
318 |
+
# Apply chat template
|
319 |
+
text = tokenizer.apply_chat_template(
|
320 |
+
messages,
|
321 |
+
tokenize=False,
|
322 |
+
add_generation_prompt=True
|
323 |
+
)
|
324 |
+
|
325 |
+
# Tokenize
|
326 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
327 |
+
|
328 |
+
# Generate
|
329 |
+
with torch.no_grad():
|
330 |
+
generated_ids = model.generate(
|
331 |
+
**inputs,
|
332 |
+
max_new_tokens=max_new_tokens,
|
333 |
+
do_sample=True,
|
334 |
+
temperature=0.7,
|
335 |
+
top_p=0.9,
|
336 |
+
repetition_penalty=1.05,
|
337 |
+
pad_token_id=tokenizer.eos_token_id
|
338 |
+
)
|
339 |
+
|
340 |
+
# Decode only the new tokens
|
341 |
+
generated_text = tokenizer.decode(
|
342 |
+
generated_ids[0][inputs.input_ids.shape[-1]:],
|
343 |
+
skip_special_tokens=True
|
344 |
+
)
|
345 |
+
|
346 |
+
return generated_text.strip()
|
347 |
|
348 |
except Exception as e:
|
349 |
logger.error(f"Generation error: {str(e)}")
|
|
|
361 |
|
362 |
@app.get("/api/health")
|
363 |
async def health_check():
|
364 |
+
loading_method = "pipeline" if pipe is not None else "direct"
|
365 |
+
return {
|
366 |
+
"status": "healthy",
|
367 |
+
"model": MODEL_ID,
|
368 |
+
"loading_method": loading_method,
|
369 |
+
"device": str(device)
|
370 |
+
}
|
371 |
|
372 |
# Gradio interface function
|
373 |
def gradio_chat(message, history):
|