import numpy as np import torch import torch.nn as nn import gradio as gr from PIL import Image import torchvision.transforms as transforms import os import io import base64 import json from datetime import datetime import torch.nn.functional as F # Force CPU mode for Zero GPU environment device = torch.device('cpu') torch.set_num_threads(4) # Optimize CPU performance # Style presets STYLE_PRESETS = { "Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0}, "Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8}, "Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2}, "High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7}, } # History management class HistoryManager: def __init__(self, max_entries=10): self.max_entries = max_entries self.history_file = "processing_history.json" self.history = self.load_history() def load_history(self): try: if os.path.exists(self.history_file): with open(self.history_file, 'r') as f: return json.load(f) return [] except Exception: return [] def save_history(self): try: with open(self.history_file, 'w') as f: json.dump(self.history[-self.max_entries:], f) except Exception as e: print(f"Error saving history: {e}") def add_entry(self, input_path, settings): entry = { "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "input_file": os.path.basename(input_path), "settings": settings } self.history.append(entry) if len(self.history) > self.max_entries: self.history.pop(0) self.save_history() def get_latest_settings(self): if self.history: return self.history[-1]["settings"] return None # Initialize history manager history_manager = HistoryManager() norm_layer = nn.InstanceNorm2d class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features) ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class Generator(nn.Module): def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): super(Generator, self).__init__() # Initial convolution block model0 = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True) ] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features*2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features*2 self.model1 = nn.Sequential(*model1) # Residual blocks model2 = [] for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features//2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features//2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [ nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out # Initialize models def load_models(): try: print("Initializing models in CPU mode...") model1 = Generator(3, 1, 3) model2 = Generator(3, 1, 3) model1.load_state_dict(torch.load('model.pth', map_location='cpu')) model2.load_state_dict(torch.load('model2.pth', map_location='cpu')) model1.eval() model2.eval() torch.set_grad_enabled(False) print("Models loaded successfully in CPU mode") return model1, model2 except Exception as e: error_msg = f"Error loading models: {str(e)}" print(error_msg) raise gr.Error("Failed to initialize models. Please check the model files and system configuration.") # Load models try: print("Starting model initialization...") model1, model2 = load_models() print("Model initialization completed") except Exception as e: print(f"Critical error during model initialization: {str(e)}") raise gr.Error("Failed to start the application due to model initialization error.") def apply_preset(preset_name): """Apply a style preset and return the settings""" if preset_name in STYLE_PRESETS: return ( STYLE_PRESETS[preset_name]["line_thickness"], STYLE_PRESETS[preset_name]["contrast"], STYLE_PRESETS[preset_name]["brightness"], True # Enable enhancement for presets ) return (1.0, 1.0, 1.0, False) def enhance_lines(img, contrast=1.0, brightness=1.0): """Enhance line drawing with contrast and brightness adjustments""" enhanced = np.array(img) enhanced = enhanced * contrast enhanced = np.clip(enhanced + brightness, 0, 1) return Image.fromarray((enhanced * 255).astype(np.uint8)) def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False, output_size="Original"): try: # Apply preset if selected if preset_name != "Custom": line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name) # Open and process input image original_img = Image.open(input_img) original_size = original_img.size # Adjust output size if output_size != "Original": width, height = map(int, output_size.split("x")) target_size = (width, height) else: target_size = original_size # Transform pipeline transform = transforms.Compose([ transforms.Resize(256, Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) input_tensor = transform(original_img).unsqueeze(0).to(device) # Process through selected model with torch.no_grad(): if version == 'Simple Lines': output = model2(input_tensor) else: output = model1(input_tensor) # Apply line thickness adjustment output = output * line_thickness # Convert to image output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1)) # Apply enhancements if enabled if enable_enhancement: output_img = enhance_lines(output_img, contrast, brightness) # Resize to target size output_img = output_img.resize(target_size, Image.BICUBIC) # Save to history settings = { "version": version, "preset": preset_name, "line_thickness": line_thickness, "contrast": contrast, "brightness": brightness, "enable_enhancement": enable_enhancement, "output_size": output_size } history_manager.add_entry(input_img, settings) return output_img except Exception as e: raise gr.Error(f"Error processing image: {str(e)}") # Custom CSS custom_css = """ .gradio-container { font-family: 'Helvetica Neue', Arial, sans-serif; max-width: 1200px !important; margin: auto; } .gr-button { border-radius: 8px; background: linear-gradient(45deg, #3498db, #2980b9); border: none; color: white; transition: all 0.3s ease; } .gr-button:hover { background: linear-gradient(45deg, #2980b9, #3498db); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.15); } .gr-button.secondary { background: linear-gradient(45deg, #95a5a6, #7f8c8d); } .gr-input { border-radius: 8px; border: 2px solid #3498db; transition: all 0.3s ease; } .gr-input:focus { border-color: #2980b9; box-shadow: 0 0 0 2px rgba(41,128,185,0.2); } .gr-form { border-radius: 12px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); padding: 20px; } .gr-header { text-align: center; margin-bottom: 2em; } """ # Create Gradio interface with gr.Blocks(css=custom_css) as iface: with gr.Row(elem_classes="gr-header"): gr.Markdown("# 🎨 Advanced Line Drawing Generator") gr.Markdown("Transform your images into beautiful line drawings with advanced controls") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(type="filepath", label="Upload Image") with gr.Row(): version = gr.Radio( choices=['Complex Lines', 'Simple Lines'], value='Simple Lines', label="Drawing Style" ) preset_selector = gr.Dropdown( choices=["Custom"] + list(STYLE_PRESETS.keys()), value="Custom", label="Style Preset" ) with gr.Accordion("Advanced Settings", open=False): output_size = gr.Dropdown( choices=["Original", "512x512", "1024x1024", "2048x2048"], value="Original", label="Output Size" ) line_thickness = gr.Slider( minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Line Thickness" ) enable_enhancement = gr.Checkbox( label="Enable Enhancement", value=False ) with gr.Group(visible=False) as enhancement_controls: contrast = gr.Slider( minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Contrast" ) brightness = gr.Slider( minimum=0.5, maximum=1.5, value=1.0, step=0.1, label="Brightness" ) with gr.Column(scale=1): output_image = gr.Image(type="pil", label="Generated Line Drawing") with gr.Row(): generate_btn = gr.Button("Generate", variant="primary", size="lg") clear_btn = gr.Button("Clear", variant="secondary", size="lg") # Event handlers enable_enhancement.change( fn=lambda x: gr.Group(visible=x), inputs=[enable_enhancement], outputs=[enhancement_controls] ) preset_selector.change( fn=apply_preset, inputs=[preset_selector], outputs=[line_thickness, contrast, brightness, enable_enhancement] ) generate_btn.click( fn=predict, inputs=[ input_image, version, preset_selector, line_thickness, contrast, brightness, enable_enhancement, output_size ], outputs=output_image ) clear_btn.click( fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"), inputs=[], outputs=[ input_image, version, preset_selector, line_thickness, contrast, brightness, enable_enhancement, output_size ] ) # Launch the interface iface.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=False )