Spaces:
Sleeping
Sleeping
Delete backup1.app.py
Browse files- backup1.app.py +0 -127
backup1.app.py
DELETED
|
@@ -1,127 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import torchvision.transforms as transforms
|
| 7 |
-
|
| 8 |
-
norm_layer = nn.InstanceNorm2d
|
| 9 |
-
|
| 10 |
-
class ResidualBlock(nn.Module):
|
| 11 |
-
def __init__(self, in_features):
|
| 12 |
-
super(ResidualBlock, self).__init__()
|
| 13 |
-
|
| 14 |
-
conv_block = [ nn.ReflectionPad2d(1),
|
| 15 |
-
nn.Conv2d(in_features, in_features, 3),
|
| 16 |
-
norm_layer(in_features),
|
| 17 |
-
nn.ReLU(inplace=True),
|
| 18 |
-
nn.ReflectionPad2d(1),
|
| 19 |
-
nn.Conv2d(in_features, in_features, 3),
|
| 20 |
-
norm_layer(in_features)
|
| 21 |
-
]
|
| 22 |
-
|
| 23 |
-
self.conv_block = nn.Sequential(*conv_block)
|
| 24 |
-
|
| 25 |
-
def forward(self, x):
|
| 26 |
-
return x + self.conv_block(x)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class Generator(nn.Module):
|
| 30 |
-
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
| 31 |
-
super(Generator, self).__init__()
|
| 32 |
-
|
| 33 |
-
# Initial convolution block
|
| 34 |
-
model0 = [ nn.ReflectionPad2d(3),
|
| 35 |
-
nn.Conv2d(input_nc, 64, 7),
|
| 36 |
-
norm_layer(64),
|
| 37 |
-
nn.ReLU(inplace=True) ]
|
| 38 |
-
self.model0 = nn.Sequential(*model0)
|
| 39 |
-
|
| 40 |
-
# Downsampling
|
| 41 |
-
model1 = []
|
| 42 |
-
in_features = 64
|
| 43 |
-
out_features = in_features*2
|
| 44 |
-
for _ in range(2):
|
| 45 |
-
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
| 46 |
-
norm_layer(out_features),
|
| 47 |
-
nn.ReLU(inplace=True) ]
|
| 48 |
-
in_features = out_features
|
| 49 |
-
out_features = in_features*2
|
| 50 |
-
self.model1 = nn.Sequential(*model1)
|
| 51 |
-
|
| 52 |
-
model2 = []
|
| 53 |
-
# Residual blocks
|
| 54 |
-
for _ in range(n_residual_blocks):
|
| 55 |
-
model2 += [ResidualBlock(in_features)]
|
| 56 |
-
self.model2 = nn.Sequential(*model2)
|
| 57 |
-
|
| 58 |
-
# Upsampling
|
| 59 |
-
model3 = []
|
| 60 |
-
out_features = in_features//2
|
| 61 |
-
for _ in range(2):
|
| 62 |
-
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
| 63 |
-
norm_layer(out_features),
|
| 64 |
-
nn.ReLU(inplace=True) ]
|
| 65 |
-
in_features = out_features
|
| 66 |
-
out_features = in_features//2
|
| 67 |
-
self.model3 = nn.Sequential(*model3)
|
| 68 |
-
|
| 69 |
-
# Output layer
|
| 70 |
-
model4 = [ nn.ReflectionPad2d(3),
|
| 71 |
-
nn.Conv2d(64, output_nc, 7)]
|
| 72 |
-
if sigmoid:
|
| 73 |
-
model4 += [nn.Sigmoid()]
|
| 74 |
-
|
| 75 |
-
self.model4 = nn.Sequential(*model4)
|
| 76 |
-
|
| 77 |
-
def forward(self, x, cond=None):
|
| 78 |
-
out = self.model0(x)
|
| 79 |
-
out = self.model1(out)
|
| 80 |
-
out = self.model2(out)
|
| 81 |
-
out = self.model3(out)
|
| 82 |
-
out = self.model4(out)
|
| 83 |
-
|
| 84 |
-
return out
|
| 85 |
-
|
| 86 |
-
model1 = Generator(3, 1, 3)
|
| 87 |
-
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
|
| 88 |
-
model1.eval()
|
| 89 |
-
|
| 90 |
-
model2 = Generator(3, 1, 3)
|
| 91 |
-
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
|
| 92 |
-
model2.eval()
|
| 93 |
-
|
| 94 |
-
def predict(input_img, ver):
|
| 95 |
-
input_img = Image.open(input_img)
|
| 96 |
-
transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
|
| 97 |
-
input_img = transform(input_img)
|
| 98 |
-
input_img = torch.unsqueeze(input_img, 0)
|
| 99 |
-
|
| 100 |
-
drawing = 0
|
| 101 |
-
with torch.no_grad():
|
| 102 |
-
if ver == 'Simple Lines':
|
| 103 |
-
drawing = model2(input_img)[0].detach()
|
| 104 |
-
else:
|
| 105 |
-
drawing = model1(input_img)[0].detach()
|
| 106 |
-
|
| 107 |
-
drawing = transforms.ToPILImage()(drawing)
|
| 108 |
-
return drawing
|
| 109 |
-
|
| 110 |
-
title="Image to Line Drawings - Complex and Simple Portraits and Landscapes"
|
| 111 |
-
examples=[
|
| 112 |
-
['01.jpeg', 'Simple Lines'], ['02.jpeg', 'Simple Lines'], ['03.jpeg', 'Simple Lines'],
|
| 113 |
-
['07.jpeg', 'Complex Lines'], ['08.jpeg', 'Complex Lines'], ['09.jpeg', 'Complex Lines'],
|
| 114 |
-
['10.jpeg', 'Simple Lines'], ['11.jpeg', 'Simple Lines'], ['12.jpeg', 'Simple Lines'],
|
| 115 |
-
['01.jpeg', 'Complex Lines'], ['02.jpeg', 'Complex Lines'], ['03.jpeg', 'Complex Lines'],
|
| 116 |
-
['04.jpeg', 'Simple Lines'], ['05.jpeg', 'Simple Lines'], ['06.jpeg', 'Simple Lines'],
|
| 117 |
-
['07.jpeg', 'Simple Lines'], ['08.jpeg', 'Simple Lines'], ['09.jpeg', 'Simple Lines'],
|
| 118 |
-
['04.jpeg', 'Complex Lines'], ['05.jpeg', 'Complex Lines'], ['06.jpeg', 'Complex Lines'],
|
| 119 |
-
['10.jpeg', 'Complex Lines'], ['11.jpeg', 'Complex Lines'], ['12.jpeg', 'Complex Lines'],
|
| 120 |
-
['Upload Wild Horses 2.jpeg', 'Complex Lines']
|
| 121 |
-
]
|
| 122 |
-
|
| 123 |
-
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
|
| 124 |
-
gr.inputs.Radio(['Complex Lines','Simple Lines'], type="value", default='Simple Lines', label='version')],
|
| 125 |
-
gr.outputs.Image(type="pil"), title=title,examples=examples)
|
| 126 |
-
|
| 127 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|