Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import json | |
| import logging | |
| import torch | |
| from PIL import Image | |
| import spaces | |
| from diffusers import DiffusionPipeline | |
| import copy | |
| # Load LoRAs from JSON file | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| # Initialize the base model | |
| base_model = "black-forest-labs/FLUX.1-dev" | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
| original_load_lora = copy.deepcopy(pipe.load_lora_into_transformer) | |
| pipe.to("cuda") | |
| def load_lora_into_transformer_patched(cls, state_dict, transformer, adapter_name=None, alpha=None, _pipeline=None): | |
| from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
| keys = list(state_dict.keys()) | |
| transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] | |
| state_dict = { | |
| k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys | |
| } | |
| if len(state_dict.keys()) > 0: | |
| # check with first key if is not in peft format | |
| first_key = next(iter(state_dict.keys())) | |
| if "lora_A" not in first_key: | |
| state_dict = convert_unet_state_dict_to_peft(state_dict) | |
| if adapter_name in getattr(transformer, "peft_config", {}): | |
| raise ValueError( | |
| f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." | |
| ) | |
| rank = {} | |
| for key, val in state_dict.items(): | |
| if "lora_B" in key: | |
| rank[key] = val.shape[1] | |
| lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict) | |
| if "use_dora" in lora_config_kwargs: | |
| if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): | |
| raise ValueError( | |
| "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
| ) | |
| else: | |
| lora_config_kwargs.pop("use_dora") | |
| lora_config_kwargs["lora_alpha"] = 42 | |
| lora_config = LoraConfig(**lora_config_kwargs) | |
| # adapter_name | |
| if adapter_name is None: | |
| adapter_name = get_adapter_name(transformer) | |
| # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
| # otherwise loading LoRA weights will lead to an error | |
| is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) | |
| inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) | |
| incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| # Offload back. | |
| if is_model_cpu_offload: | |
| _pipeline.enable_model_cpu_offload() | |
| elif is_sequential_cpu_offload: | |
| _pipeline.enable_sequential_cpu_offload() | |
| # Unsafe code /> | |
| def update_selection(evt: gr.SelectData): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index | |
| ) | |
| def run_lora(prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| # Load LoRA weights | |
| if "weights" in selected_lora: | |
| pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
| else: | |
| pipe.load_lora_weights(lora_path) | |
| if "custom_alpha" in selected_lora: | |
| pipe.load_lora_into_transformer = load_lora_into_transformer_patched | |
| else: | |
| pipe.load_lora_into_transformer = original_load_lora | |
| # Set random seed for reproducibility | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| # Generate image | |
| image = pipe( | |
| prompt=f"{prompt} {trigger_word}", | |
| #negative_prompt=negative_prompt, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| #cross_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| # Unload LoRA weights | |
| pipe.unload_lora_weights() | |
| return image | |
| ''' | |
| #gen_btn{height: 100%} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft()) as app: | |
| gr.Markdown("# FLUX.1 LoRA the Explorer") | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") | |
| with gr.Column(scale=1): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Gallery", | |
| allow_preview=False, | |
| columns=3 | |
| ) | |
| with gr.Column(scale=4): | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| #with gr.Column(): | |
| #prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it") | |
| #negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry") | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
| with gr.Row(): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.85) | |
| gallery.select(update_selection, outputs=[prompt, selected_info, selected_index]) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale], | |
| outputs=[result] | |
| ) | |
| app.queue() | |
| app.launch() |