Spaces:
Paused
Paused
| import logging | |
| import random | |
| import warnings | |
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import FluxControlNetModel | |
| from diffusers.pipelines import FluxControlNetPipeline | |
| from gradio_imageslider import ImageSlider | |
| from PIL import Image | |
| from huggingface_hub import snapshot_download | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 512px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| device = "cuda" | |
| else: | |
| power_device = "CPU" | |
| device = "cpu" | |
| huggingface_token = os.getenv("HF_TOKEN") | |
| model_path = snapshot_download( | |
| repo_id="black-forest-labs/FLUX.1-dev", | |
| repo_type="model", | |
| ignore_patterns=["*.md", "*..gitattributes"], | |
| local_dir="FLUX.1-dev", | |
| token=huggingface_token, # type a new token-id. | |
| ) | |
| # Load pipeline | |
| controlnet = FluxControlNetModel.from_pretrained( | |
| "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16 | |
| ).to(device) | |
| pipe = FluxControlNetPipeline.from_pretrained( | |
| model_path, controlnet=controlnet, torch_dtype=torch.bfloat16 | |
| ) | |
| pipe.to(device) | |
| MAX_SEED = 1000000 | |
| MAX_PIXEL_BUDGET = 1024 * 1024 | |
| def process_input(input_image, upscale_factor, **kwargs): | |
| w, h = input_image.size | |
| w_original, h_original = w, h | |
| aspect_ratio = w / h | |
| was_resized = False | |
| if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET: | |
| warnings.warn( | |
| f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels." | |
| ) | |
| gr.Info( | |
| f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget." | |
| ) | |
| input_image = input_image.resize( | |
| ( | |
| int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor), | |
| int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor), | |
| ) | |
| ) | |
| was_resized = True | |
| # resize to multiple of 8 | |
| w, h = input_image.size | |
| w = w - w % 8 | |
| h = h - h % 8 | |
| return input_image.resize((w, h)), w_original, h_original, was_resized | |
| #(duration=42) | |
| def infer( | |
| seed, | |
| randomize_seed, | |
| input_image, | |
| num_inference_steps, | |
| upscale_factor, | |
| controlnet_conditioning_scale, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| true_input_image = input_image | |
| input_image, w_original, h_original, was_resized = process_input( | |
| input_image, upscale_factor | |
| ) | |
| # rescale with upscale factor | |
| w, h = input_image.size | |
| control_image = input_image.resize((w * upscale_factor, h * upscale_factor)) | |
| generator = torch.Generator().manual_seed(seed) | |
| gr.Info("Upscaling image...") | |
| image = pipe( | |
| prompt="", | |
| control_image=control_image, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=3.5, | |
| height=control_image.size[1], | |
| width=control_image.size[0], | |
| generator=generator, | |
| ).images[0] | |
| if was_resized: | |
| gr.Info( | |
| f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size." | |
| ) | |
| # resize to target desired size | |
| image = image.resize((w_original * upscale_factor, h_original * upscale_factor)) | |
| image.save("output.jpg") | |
| # convert to numpy | |
| return [true_input_image, image, seed] | |
| def create_snow_effect(): | |
| # CSS 스타일 정의 | |
| snow_css = """ | |
| @keyframes snowfall { | |
| 0% { | |
| transform: translateY(-10vh) translateX(0); | |
| opacity: 1; | |
| } | |
| 100% { | |
| transform: translateY(100vh) translateX(100px); | |
| opacity: 0.3; | |
| } | |
| } | |
| .snowflake { | |
| position: fixed; | |
| color: white; | |
| font-size: 1.5em; | |
| user-select: none; | |
| z-index: 1000; | |
| pointer-events: none; | |
| animation: snowfall linear infinite; | |
| } | |
| """ | |
| # JavaScript 코드 정의 | |
| snow_js = """ | |
| function createSnowflake() { | |
| const snowflake = document.createElement('div'); | |
| snowflake.innerHTML = '❄'; | |
| snowflake.className = 'snowflake'; | |
| snowflake.style.left = Math.random() * 100 + 'vw'; | |
| snowflake.style.animationDuration = Math.random() * 3 + 2 + 's'; | |
| snowflake.style.opacity = Math.random(); | |
| document.body.appendChild(snowflake); | |
| setTimeout(() => { | |
| snowflake.remove(); | |
| }, 5000); | |
| } | |
| setInterval(createSnowflake, 200); | |
| """ | |
| # CSS와 JavaScript를 결합한 HTML | |
| snow_html = f""" | |
| <style> | |
| {snow_css} | |
| </style> | |
| <script> | |
| {snow_js} | |
| </script> | |
| """ | |
| return gr.HTML(snow_html) | |
| with gr.Blocks(theme="soft", css=css) as demo: | |
| gr.HTML( | |
| """ | |
| <div class='container' style='display:flex; justify-content:center; gap:12px;'> | |
| <a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank"> | |
| <img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge"> | |
| </a> | |
| <a href="https://discord.gg/openfreeai" target="_blank"> | |
| <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge"> | |
| </a> | |
| </div> | |
| """ | |
| ) | |
| create_snow_effect() | |
| with gr.Row(): | |
| run_button = gr.Button(value="Run") | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| input_im = gr.Image(label="Input Image", type="pil") | |
| with gr.Column(scale=1): | |
| num_inference_steps = gr.Slider( | |
| label="Number of Inference Steps", | |
| minimum=8, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| upscale_factor = gr.Slider( | |
| label="Upscale Factor", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=4, | |
| ) | |
| controlnet_conditioning_scale = gr.Slider( | |
| label="Controlnet Conditioning Scale", | |
| minimum=0.1, | |
| maximum=1.5, | |
| step=0.1, | |
| value=0.6, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| result = ImageSlider(label="Input / Output", type="pil", interactive=True) | |
| examples = gr.Examples( | |
| examples=[ | |
| [42, False, "z1.webp", 28, 4, 0.6], | |
| [42, False, "z2.webp", 28, 4, 0.6], | |
| ], | |
| inputs=[ | |
| seed, | |
| randomize_seed, | |
| input_im, | |
| num_inference_steps, | |
| upscale_factor, | |
| controlnet_conditioning_scale, | |
| ], | |
| fn=infer, | |
| outputs=result, | |
| cache_examples="lazy", | |
| ) | |
| gr.on( | |
| [run_button.click], | |
| fn=infer, | |
| inputs=[ | |
| seed, | |
| randomize_seed, | |
| input_im, | |
| num_inference_steps, | |
| upscale_factor, | |
| controlnet_conditioning_scale, | |
| ], | |
| outputs=result, | |
| show_api=False, | |
| # show_progress="minimal", | |
| ) | |
| demo.queue().launch(share=False, show_api=False) |