fantaxy commited on
Commit
484ef27
1 Parent(s): 54944c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -80
README.md CHANGED
@@ -1,82 +1,10 @@
1
  ---
2
- title: LTX-Video-Playground # Replace with your app's title
3
- emoji: 🚀 # Choose an emoji to represent your app
4
- colorFrom: blue # Choose a color to start the gradient (e.g., blue, red, green)
5
- colorTo: purple # Choose a color to end the gradient
6
- sdk: gradio # Specify the SDK, e.g., gradio or streamlit
7
- sdk_version: "4.44.1" # Specify the SDK version if needed
8
- app_file: app.py # Name of your main app file
9
- pinned: false # Set to true if you want to pin this Space
10
  ---
11
-
12
- <div align="center">
13
-
14
- # Xora️
15
-
16
- </div>
17
-
18
- This is the official repository for Xora.
19
-
20
- ## Table of Contents
21
-
22
- - [Introduction](#introduction)
23
- - [Installation](#installation)
24
- - [Inference](#inference)
25
- - [Inference Code](#inference-code)
26
- - [Acknowledgement](#acknowledgement)
27
-
28
- ## Introduction
29
-
30
- The performance of Diffusion Transformers is heavily influenced by the number of generated latent pixels (or tokens). In video generation, the token count becomes substantial as the number of frames increases. To address this, we designed a carefully optimized VAE that compresses videos into a smaller number of tokens while utilizing a deeper latent space. This approach enables our model to generate high-quality 768x512 videos at 24 FPS, achieving near real-time speeds.
31
-
32
- ## Installation
33
-
34
- # Setup
35
-
36
- The codebase currently uses Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2.
37
-
38
- ```bash
39
- git clone https://github.com/LightricksResearch/xora-core.git
40
- cd xora-core
41
-
42
- # create env
43
- python -m venv env
44
- source env/bin/activate
45
- python -m pip install -e .\[inference-script\]
46
- ```
47
-
48
- Then, download the model from [Hugging Face](https://huggingface.co/Lightricks/Xora)
49
-
50
- ```python
51
- from huggingface_hub import snapshot_download
52
-
53
- model_path = 'PATH' # The local directory to save downloaded checkpoint
54
- snapshot_download("Lightricks/Xora", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model')
55
- ```
56
-
57
- ## Inference
58
-
59
- ### Inference Code
60
-
61
- To use our model, please follow the inference code in `inference.py` at [https://github.com/LightricksResearch/xora-core/blob/main/inference.py]():
62
-
63
- For text-to-video generation:
64
-
65
- ```bash
66
- python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH
67
- ```
68
-
69
- For image-to-video generation:
70
-
71
- ```python
72
- python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH
73
-
74
- ```
75
-
76
- ## Acknowledgement
77
-
78
- We are grateful for the following awesome projects when implementing Xora:
79
-
80
- - [DiT](https://github.com/facebookresearch/DiT) and [PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha): vision transformers for image generation.
81
-
82
- [//]: # "## Citation"
 
1
  ---
2
+ title: fastvideogen
3
+ emoji: 🚀
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: "4.44.1"
8
+ app_file: app.py
9
+ pinned: false
10
  ---