Spaces:
Sleeping
Sleeping
Dmitry Trifonov
commited on
Commit
·
b6fedf9
1
Parent(s):
0075cb7
use just endpoint in text to image demo
Browse files- text_to_image.py +23 -145
text_to_image.py
CHANGED
@@ -1,158 +1,36 @@
|
|
1 |
import base64
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import hashlib
|
5 |
-
|
6 |
-
import requests
|
7 |
-
import time
|
8 |
from io import BytesIO
|
9 |
|
|
|
10 |
from PIL import Image
|
11 |
-
from fair import FairClient
|
12 |
-
|
13 |
-
logger = logging.getLogger()
|
14 |
-
|
15 |
-
SERVER_ADDRESS = "https://faircompute.com:8000"
|
16 |
-
INFERENCE_NODE = "magnus"
|
17 |
-
TUNNEL_NODE = "gcs-e2-micro"
|
18 |
-
# SERVER_ADDRESS = "http://localhost:8000"
|
19 |
-
# INFERENCE_NODE = "ef09913249aa40ecba7d0097f7622855"
|
20 |
-
# TUNNEL_NODE = "c312e6c4788b00c73c287ab0445d3655"
|
21 |
-
|
22 |
-
INFERENCE_DOCKER_IMAGE = "faircompute/diffusers-api-dreamshaper-8"
|
23 |
-
TUNNEL_DOCKER_IMAGE = "rapiz1/rathole"
|
24 |
-
|
25 |
-
endpoint_client = None
|
26 |
-
fair_client = None
|
27 |
-
|
28 |
-
|
29 |
-
class EndpointClient:
|
30 |
-
def __init__(self, server_address, timeout):
|
31 |
-
self.endpoint_address = f'http://{server_address}:5000'
|
32 |
-
response = requests.get(os.path.join(self.endpoint_address, 'healthcheck'), timeout=timeout).json()
|
33 |
-
if response['state'] != 'healthy':
|
34 |
-
raise Exception("Server is not healthy")
|
35 |
-
|
36 |
-
def infer(self, prompt):
|
37 |
-
inputs = {
|
38 |
-
"modelInputs": {
|
39 |
-
"prompt": prompt,
|
40 |
-
"num_inference_steps": 25,
|
41 |
-
"width": 512,
|
42 |
-
"height": 512,
|
43 |
-
},
|
44 |
-
"callInputs": {
|
45 |
-
"MODEL_ID": "lykon/dreamshaper-8",
|
46 |
-
"PIPELINE": "AutoPipelineForText2Image",
|
47 |
-
"SCHEDULER": "DEISMultistepScheduler",
|
48 |
-
"PRECISION": "fp16",
|
49 |
-
"REVISION": "fp16",
|
50 |
-
},
|
51 |
-
}
|
52 |
-
|
53 |
-
response = requests.post(self.endpoint_address, json=inputs).json()
|
54 |
-
image_data = BytesIO(base64.b64decode(response["image_base64"]))
|
55 |
-
image = Image.open(image_data)
|
56 |
-
|
57 |
-
return image
|
58 |
-
|
59 |
-
|
60 |
-
class ServerNotReadyException(Exception):
|
61 |
-
pass
|
62 |
-
|
63 |
-
|
64 |
-
def create_fair_client():
|
65 |
-
return FairClient(server_address=SERVER_ADDRESS,
|
66 |
-
user_email=os.getenv('FAIRCOMPUTE_EMAIL', "debug-usr"),
|
67 |
-
user_password=os.environ.get('FAIRCOMPUTE_PASSWORD', "debug-pwd"))
|
68 |
-
|
69 |
-
|
70 |
-
def create_endpoint_client(fc, retries, timeout=1.0, delay=2.0):
|
71 |
-
nodes = fc.cluster().nodes.list()
|
72 |
-
server_address = next(info['host_address'] for info in nodes if info['name'] == TUNNEL_NODE)
|
73 |
-
for i in range(retries):
|
74 |
-
try:
|
75 |
-
return EndpointClient(server_address, timeout=timeout)
|
76 |
-
except (requests.exceptions.ConnectionError, requests.exceptions.HTTPError, requests.exceptions.Timeout) as e:
|
77 |
-
logging.exception(e)
|
78 |
-
time.sleep(delay)
|
79 |
-
|
80 |
-
raise ServerNotReadyException("Failed to start the server")
|
81 |
-
|
82 |
-
|
83 |
-
def start_tunnel(fc: FairClient):
|
84 |
-
# generate fixed random authentication token based off some secret
|
85 |
-
token = hashlib.sha256(os.environ.get('FAIRCOMPUTE_PASSWORD', "debug-pwd").encode()).hexdigest()
|
86 |
-
|
87 |
-
# start tunnel node
|
88 |
-
server_config = f"""
|
89 |
-
[server]
|
90 |
-
bind_addr = "0.0.0.0:2333" # port that rathole listens for clients
|
91 |
-
|
92 |
-
[server.services.inference_server]
|
93 |
-
token = "{token}" # token that is used to authenticate the client for the service
|
94 |
-
bind_addr = "0.0.0.0:5000" # port that exposes service to the Internet
|
95 |
-
"""
|
96 |
-
with open('server.toml', 'w') as file:
|
97 |
-
file.write(server_config)
|
98 |
-
fc.run(node_name=TUNNEL_NODE,
|
99 |
-
image=TUNNEL_DOCKER_IMAGE,
|
100 |
-
command=["--server", "/app/config.toml"],
|
101 |
-
volumes=[("./server.toml", "/app/config.toml")],
|
102 |
-
network="host",
|
103 |
-
detach=True)
|
104 |
-
|
105 |
-
nodes = fc.cluster().nodes.list()
|
106 |
-
server_address = next(info['host_address'] for info in nodes if info['name'] == TUNNEL_NODE)
|
107 |
-
client_config = f"""
|
108 |
-
[client]
|
109 |
-
remote_addr = "{server_address}:2333" # address of the rathole server
|
110 |
-
|
111 |
-
[client.services.inference_server]
|
112 |
-
token = "{token}" # token that is used to authenticate the client for the service
|
113 |
-
local_addr = "127.0.0.1:5001" # address of the service that needs to be forwarded
|
114 |
-
"""
|
115 |
-
with open('client.toml', 'w') as file:
|
116 |
-
file.write(client_config)
|
117 |
-
fc.run(node_name=INFERENCE_NODE,
|
118 |
-
image=TUNNEL_DOCKER_IMAGE,
|
119 |
-
command=["--client", "/app/config.toml"],
|
120 |
-
volumes=[("./client.toml", "/app/config.toml")],
|
121 |
-
network="host",
|
122 |
-
detach=True)
|
123 |
-
|
124 |
|
125 |
-
|
126 |
-
fc.run(node_name=INFERENCE_NODE,
|
127 |
-
image=INFERENCE_DOCKER_IMAGE,
|
128 |
-
runtime="nvidia",
|
129 |
-
ports=[(5001, 8000)],
|
130 |
-
detach=True)
|
131 |
|
132 |
|
133 |
-
def text_to_image(
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
return endpoint_client.infer(text)
|
143 |
-
# client is not configured, try connecting to the inference server, maybe it is running
|
144 |
-
else:
|
145 |
-
endpoint_client = create_endpoint_client(fair_client, 1)
|
146 |
-
except (requests.exceptions.ConnectionError, requests.exceptions.HTTPError, requests.exceptions.Timeout, ServerNotReadyException):
|
147 |
-
# inference server is not ready, start inference server and open the tunnel
|
148 |
-
start_inference_server(fair_client)
|
149 |
-
start_tunnel(fair_client)
|
150 |
-
endpoint_client = create_endpoint_client(fair_client, retries=10)
|
151 |
|
152 |
-
|
153 |
-
return endpoint_client.infer(text)
|
154 |
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
image = text_to_image(
|
158 |
image.save("result.png")
|
|
|
1 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from io import BytesIO
|
3 |
|
4 |
+
import requests
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
ENDPOINT_ADDRESS = "http://35.233.231.20:5000"
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
+
def text_to_image(prompt):
|
11 |
+
inputs = {
|
12 |
+
"modelInputs": {
|
13 |
+
"prompt": prompt,
|
14 |
+
"num_inference_steps": 25,
|
15 |
+
"width": 512,
|
16 |
+
"height": 512,
|
17 |
+
},
|
18 |
+
"callInputs": {
|
19 |
+
"MODEL_ID": "lykon/dreamshaper-8",
|
20 |
+
"PIPELINE": "AutoPipelineForText2Image",
|
21 |
+
"SCHEDULER": "DEISMultistepScheduler",
|
22 |
+
"PRECISION": "fp16",
|
23 |
+
"REVISION": "fp16",
|
24 |
+
},
|
25 |
+
}
|
26 |
|
27 |
+
response = requests.post(ENDPOINT_ADDRESS, json=inputs).json()
|
28 |
+
image_data = BytesIO(base64.b64decode(response["image_base64"]))
|
29 |
+
image = Image.open(image_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
return image
|
|
|
32 |
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
+
image = text_to_image(prompt="Robot dinosaur")
|
36 |
image.save("result.png")
|