Spaces:
Sleeping
Sleeping
Add inference with fair compute api
Browse files- app.py +57 -58
- fair.py +254 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,36 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
from datasets import load_dataset
|
3 |
from PIL import Image
|
4 |
import re
|
5 |
import os
|
6 |
import requests
|
|
|
|
|
|
|
7 |
|
8 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
9 |
|
10 |
model_id = "runwayml/stable-diffusion-v1-5"
|
11 |
device = "cuda"
|
12 |
|
13 |
-
word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
|
14 |
-
word_list = word_list_dataset["train"]['text']
|
15 |
|
16 |
-
is_gpu_busy = False
|
17 |
def infer(prompt):
|
18 |
-
global is_gpu_busy
|
19 |
samples = 4
|
20 |
steps = 50
|
21 |
scale = 7.5
|
22 |
-
for filter in word_list:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
images = []
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for image in images_request.json()["images"]:
|
31 |
-
image_b64 = (f"data:image/jpeg;base64,{image}")
|
32 |
-
images.append(image_b64)
|
33 |
-
|
34 |
return images
|
35 |
|
36 |
|
@@ -239,55 +238,55 @@ with block:
|
|
239 |
rounded=(False, True, True, False),
|
240 |
full_width=False,
|
241 |
)
|
242 |
-
|
243 |
gallery = gr.Gallery(
|
244 |
label="Generated images", show_label=False, elem_id="gallery"
|
245 |
).style(grid=[2], height="auto")
|
246 |
|
247 |
-
with gr.Group(elem_id="container-advanced-btns"):
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
|
257 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
|
258 |
-
scale = gr.Slider(
|
259 |
-
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
|
260 |
-
)
|
261 |
-
seed = gr.Slider(
|
262 |
-
label="Seed",
|
263 |
-
minimum=0,
|
264 |
-
maximum=2147483647,
|
265 |
-
step=1,
|
266 |
-
randomize=True,
|
267 |
-
)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
text.submit(infer, inputs=text, outputs=[gallery], postprocess=False)
|
273 |
-
btn.click(infer, inputs=text, outputs=[gallery], postprocess=False)
|
274 |
|
275 |
-
advanced_button.click(
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
)
|
285 |
-
share_button.click(
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
)
|
291 |
gr.HTML(
|
292 |
"""
|
293 |
<div class="footer">
|
|
|
1 |
import gradio as gr
|
2 |
+
#from datasets import load_dataset
|
3 |
from PIL import Image
|
4 |
import re
|
5 |
import os
|
6 |
import requests
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from fair import text_to_image
|
10 |
|
11 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
12 |
|
13 |
model_id = "runwayml/stable-diffusion-v1-5"
|
14 |
device = "cuda"
|
15 |
|
16 |
+
#word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
|
17 |
+
#word_list = word_list_dataset["train"]['text']
|
18 |
|
19 |
+
#is_gpu_busy = False
|
20 |
def infer(prompt):
|
21 |
+
#global is_gpu_busy
|
22 |
samples = 4
|
23 |
steps = 50
|
24 |
scale = 7.5
|
25 |
+
# for filter in word_list:
|
26 |
+
# if re.search(rf"\b{filter}\b", prompt):
|
27 |
+
# raise gr.Error("Unsafe content found. Please try again with different prompts.")
|
28 |
+
#
|
29 |
images = []
|
30 |
+
image = text_to_image(prompt)
|
31 |
+
image = np.array(Image.open(image).convert('RGB'))
|
32 |
+
images = [image, image, image, image]
|
|
|
|
|
|
|
|
|
33 |
return images
|
34 |
|
35 |
|
|
|
238 |
rounded=(False, True, True, False),
|
239 |
full_width=False,
|
240 |
)
|
241 |
+
# gallery = gr.Image(type="filepath").style(grid=[2], height="auto")
|
242 |
gallery = gr.Gallery(
|
243 |
label="Generated images", show_label=False, elem_id="gallery"
|
244 |
).style(grid=[2], height="auto")
|
245 |
|
246 |
+
# with gr.Group(elem_id="container-advanced-btns"):
|
247 |
+
# advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
|
248 |
+
# with gr.Group(elem_id="share-btn-container"):
|
249 |
+
# community_icon = gr.HTML(community_icon_html)
|
250 |
+
# loading_icon = gr.HTML(loading_icon_html)
|
251 |
+
# share_button = gr.Button("Share to community", elem_id="share-btn")
|
252 |
+
#
|
253 |
+
# with gr.Row(elem_id="advanced-options"):
|
254 |
+
# gr.Markdown("Advanced settings are temporarily unavailable")
|
255 |
+
# samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
|
256 |
+
# steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
|
257 |
+
# scale = gr.Slider(
|
258 |
+
# label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
|
259 |
+
# )
|
260 |
+
# seed = gr.Slider(
|
261 |
+
# label="Seed",
|
262 |
+
# minimum=0,
|
263 |
+
# maximum=2147483647,
|
264 |
+
# step=1,
|
265 |
+
# randomize=True,
|
266 |
+
# )
|
267 |
|
268 |
+
#ex = gr.Examples(examples=examples, fn=infer, inputs=text, outputs=[gallery], cache_examples=True, postprocess=False)
|
269 |
+
#ex.dataset.headers = [""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
text.submit(infer, inputs=text, outputs=[gallery])
|
272 |
+
btn.click(infer, inputs=text, outputs=[gallery])
|
|
|
|
|
|
|
273 |
|
274 |
+
# advanced_button.click(
|
275 |
+
# None,
|
276 |
+
# [],
|
277 |
+
# text,
|
278 |
+
# _js="""
|
279 |
+
# () => {
|
280 |
+
# const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
|
281 |
+
# options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
|
282 |
+
# }""",
|
283 |
+
# )
|
284 |
+
# share_button.click(
|
285 |
+
# None,
|
286 |
+
# [],
|
287 |
+
# [],
|
288 |
+
# _js=share_js,
|
289 |
+
# )
|
290 |
gr.HTML(
|
291 |
"""
|
292 |
<div class="footer">
|
fair.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from typing import List
|
5 |
+
import logging
|
6 |
+
logger = logging.getLogger()
|
7 |
+
|
8 |
+
import requests
|
9 |
+
|
10 |
+
#SERVER_ADRESS="https://faircompute.com:8000/api/v1"
|
11 |
+
SERVER_ADRESS="http://localhost:8000/api/v1"
|
12 |
+
DOCKER_IMAGE="faircompute/stable-diffusion:pytorch-1.13.1-cu116"
|
13 |
+
#DOCKER_IMAGE="sha256:e06453fe869556ea3e63572a935aed4261337b261fdf7bda370472b0587409a9"
|
14 |
+
|
15 |
+
def authenticate(email: str, password: str):
|
16 |
+
url = f'{SERVER_ADRESS}/auth/login'
|
17 |
+
json_obj = {"email": email, "password": password}
|
18 |
+
resp = requests.post(url, json=json_obj)
|
19 |
+
token = resp.json()["token"]
|
20 |
+
return token
|
21 |
+
|
22 |
+
def get(url, token, **kwargs):
|
23 |
+
headers = {
|
24 |
+
'Authorization': f'Bearer {token}'
|
25 |
+
}
|
26 |
+
response = requests.get(url, headers=headers, **kwargs)
|
27 |
+
|
28 |
+
if not response.ok:
|
29 |
+
raise Exception(f"Error! status: {response.status_code}")
|
30 |
+
return response
|
31 |
+
|
32 |
+
|
33 |
+
def put(url, token, data):
|
34 |
+
headers = {
|
35 |
+
'Content-Type': 'application/json',
|
36 |
+
'Authorization': f'Bearer {token}'
|
37 |
+
}
|
38 |
+
if not isinstance(data, str):
|
39 |
+
data = json.dumps(data)
|
40 |
+
response = requests.put(url, headers=headers, data=data)
|
41 |
+
|
42 |
+
if not response.ok and response.status_code != 206:
|
43 |
+
raise Exception(f"Error! status: {response.status_code}")
|
44 |
+
return response
|
45 |
+
|
46 |
+
|
47 |
+
def put_program(token, launcher: str, image: str, runtime: str, command: List[str]):
|
48 |
+
url = f"{SERVER_ADRESS}/programs"
|
49 |
+
data = {
|
50 |
+
launcher: {
|
51 |
+
"image": image,
|
52 |
+
"command": command,
|
53 |
+
"runtime": runtime
|
54 |
+
}
|
55 |
+
}
|
56 |
+
response = put(url=url, token=token, data=data)
|
57 |
+
|
58 |
+
return int(response.text)
|
59 |
+
|
60 |
+
|
61 |
+
def put_job(token, program_id, input_files, output_files):
|
62 |
+
url = f"{SERVER_ADRESS}/jobs?program={program_id}"
|
63 |
+
data = {
|
64 |
+
'input_files': input_files,
|
65 |
+
'output_files': output_files
|
66 |
+
}
|
67 |
+
|
68 |
+
response = put(url=url, token=token, data=data)
|
69 |
+
|
70 |
+
return int(response.text)
|
71 |
+
|
72 |
+
|
73 |
+
def get_job_status(token, job_id):
|
74 |
+
url = f"{SERVER_ADRESS}/jobs/{job_id}/status"
|
75 |
+
response = get(url=url, token=token)
|
76 |
+
return response.text
|
77 |
+
|
78 |
+
|
79 |
+
def get_cluster_summary(token):
|
80 |
+
url = f"{SERVER_ADRESS}/nodes/summary"
|
81 |
+
|
82 |
+
response = get(token=token, url=url)
|
83 |
+
|
84 |
+
return response.json()
|
85 |
+
|
86 |
+
|
87 |
+
def put_job_stream_data(token, job_id, name, data):
|
88 |
+
url = f"{SERVER_ADRESS}/jobs/{job_id}/data/streams/{name}"
|
89 |
+
response = put(url=url, token=token, data=data)
|
90 |
+
|
91 |
+
return response.text
|
92 |
+
|
93 |
+
|
94 |
+
def put_job_stream_eof(token, job_id, name):
|
95 |
+
url = f"{SERVER_ADRESS}/jobs/{job_id}/data/streams/{name}/eof"
|
96 |
+
|
97 |
+
response = put(url=url, token=token, data=None)
|
98 |
+
|
99 |
+
return response.text
|
100 |
+
|
101 |
+
|
102 |
+
def wait_for_file(token, job_id, path, local_path, attempts=10):
|
103 |
+
headers = {
|
104 |
+
'Authorization': f'Bearer {token}'
|
105 |
+
}
|
106 |
+
for i in range(attempts):
|
107 |
+
url = f"{SERVER_ADRESS}/jobs/{job_id}/data/files/{path}"
|
108 |
+
print(f"Waiting for file {path}...")
|
109 |
+
try:
|
110 |
+
with requests.get(url=url, headers=headers, stream=True) as r:
|
111 |
+
r.raise_for_status()
|
112 |
+
with open(local_path, 'wb') as f:
|
113 |
+
for chunk in r.iter_content(chunk_size=8192):
|
114 |
+
f.write(chunk)
|
115 |
+
|
116 |
+
print(f"File {local_path} ready")
|
117 |
+
return local_path
|
118 |
+
except Exception as e:
|
119 |
+
print(e)
|
120 |
+
time.sleep(0.5)
|
121 |
+
|
122 |
+
print(f"Failed to receive {local_path}")
|
123 |
+
|
124 |
+
|
125 |
+
def text_to_image(text):
|
126 |
+
email = os.getenv('FAIRCOMPUTE_EMAIL')
|
127 |
+
password = os.environ.get('FAIRCOMPUTE_PASSWORD')
|
128 |
+
token = authenticate(email=email, password=password)
|
129 |
+
|
130 |
+
logger.info(token)
|
131 |
+
|
132 |
+
summary = get_cluster_summary(token=token)
|
133 |
+
logger.info("Summary:")
|
134 |
+
logger.info(summary)
|
135 |
+
program_id = put_program(token=token,
|
136 |
+
launcher="Docker",
|
137 |
+
image=DOCKER_IMAGE,
|
138 |
+
runtime="nvidia",
|
139 |
+
command=[])
|
140 |
+
logger.info(program_id)
|
141 |
+
|
142 |
+
job_id = put_job(token=token,
|
143 |
+
program_id=program_id,
|
144 |
+
input_files=[],
|
145 |
+
output_files=["/workspace/result.png"])
|
146 |
+
|
147 |
+
logger.info(job_id)
|
148 |
+
|
149 |
+
status = get_job_status(token=token,
|
150 |
+
job_id=job_id)
|
151 |
+
logger.info(status)
|
152 |
+
|
153 |
+
while status != "Processing" and status != "Completed":
|
154 |
+
status = get_job_status(token=token,
|
155 |
+
job_id=job_id)
|
156 |
+
logger.info(status)
|
157 |
+
time.sleep(0.5)
|
158 |
+
|
159 |
+
res = put_job_stream_data(token=token,
|
160 |
+
job_id=job_id,
|
161 |
+
name="stdin",
|
162 |
+
data=text + "\n")
|
163 |
+
logger.info(res)
|
164 |
+
|
165 |
+
res = put_job_stream_eof(token=token,
|
166 |
+
job_id=job_id,
|
167 |
+
name="stdin")
|
168 |
+
logger.info(res)
|
169 |
+
|
170 |
+
status = get_job_status(token=token,
|
171 |
+
job_id=job_id)
|
172 |
+
logger.info(status)
|
173 |
+
|
174 |
+
while status == "Processing":
|
175 |
+
status = get_job_status(token=token,
|
176 |
+
job_id=job_id)
|
177 |
+
logger.info(status)
|
178 |
+
time.sleep(0.5)
|
179 |
+
if status == "Completed":
|
180 |
+
logger.info("Done!")
|
181 |
+
else:
|
182 |
+
logger.info("Job Failed")
|
183 |
+
resp = wait_for_file(token=token,
|
184 |
+
job_id=job_id,
|
185 |
+
path="%2Fworkspace%2Fresult.png",
|
186 |
+
local_path="result.png")
|
187 |
+
logger.info(resp)
|
188 |
+
return resp
|
189 |
+
|
190 |
+
|
191 |
+
if __name__=="__main__":
|
192 |
+
email = os.getenv('FAIRCOMPUTE_EMAIL')
|
193 |
+
password = os.environ.get('FAIRCOMPUTE_PASSWORD')
|
194 |
+
token = authenticate(email=email, password=password)
|
195 |
+
|
196 |
+
print(token)
|
197 |
+
|
198 |
+
summary = get_cluster_summary(token=token)
|
199 |
+
print("Summary:")
|
200 |
+
print(summary)
|
201 |
+
program_id = put_program(token=token,
|
202 |
+
launcher="Docker",
|
203 |
+
image=DOCKER_IMAGE,
|
204 |
+
runtime="nvidia",
|
205 |
+
command=[])
|
206 |
+
print(program_id)
|
207 |
+
|
208 |
+
job_id = put_job(token=token,
|
209 |
+
program_id=program_id,
|
210 |
+
input_files=[],
|
211 |
+
output_files=["/workspace/result.png"])
|
212 |
+
|
213 |
+
print(job_id)
|
214 |
+
|
215 |
+
status = get_job_status(token=token,
|
216 |
+
job_id=job_id)
|
217 |
+
print(status)
|
218 |
+
|
219 |
+
while status != "Processing" and status != "Completed":
|
220 |
+
status = get_job_status(token=token,
|
221 |
+
job_id=job_id)
|
222 |
+
print(status)
|
223 |
+
time.sleep(0.5)
|
224 |
+
|
225 |
+
res = put_job_stream_data(token=token,
|
226 |
+
job_id=job_id,
|
227 |
+
name="stdin",
|
228 |
+
data="Robot dinozaur\n")
|
229 |
+
print(res)
|
230 |
+
|
231 |
+
res = put_job_stream_eof(token=token,
|
232 |
+
job_id=job_id,
|
233 |
+
name="stdin")
|
234 |
+
print(res)
|
235 |
+
|
236 |
+
status = get_job_status(token=token,
|
237 |
+
job_id=job_id)
|
238 |
+
print(status)
|
239 |
+
|
240 |
+
while status == "Processing":
|
241 |
+
status = get_job_status(token=token,
|
242 |
+
job_id=job_id)
|
243 |
+
print(status)
|
244 |
+
time.sleep(0.5)
|
245 |
+
if status == "Completed":
|
246 |
+
print("Done!")
|
247 |
+
else:
|
248 |
+
print("Job Failed")
|
249 |
+
resp = wait_for_file(token=token,
|
250 |
+
job_id=job_id,
|
251 |
+
path="%2Fworkspace%2Fresult.png",
|
252 |
+
local_path="result.png")
|
253 |
+
print(resp)
|
254 |
+
|
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
gradio < 4
|