Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("fadodr/finetuned_mental_health_therapy_original") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| print("Message:", message) | |
| print("History:", history) | |
| print("System Message:", system_message) | |
| print("Max Tokens:", max_tokens) | |
| print("Temperature:", temperature) | |
| print("Top-p:", top_p) | |
| print(dir(client)) | |
| try: | |
| messages = [{"role": "instruction", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "input", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "response", "content": val[1]}) | |
| messages.append({"role": "input", "content": message}) | |
| response = "" | |
| print("sending message") | |
| print(messages) | |
| for message in client.text_generation( | |
| messages, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| print(message) | |
| token = message.choices[0].delta.content[len(messages):] | |
| response += token | |
| yield response | |
| except Exception as e: | |
| print(e) | |
| # from transformers import pipeline, BitsAndBytesConfig | |
| # config = BitsAndBytesConfig(load_in_4bit=True) | |
| # # Load the pipeline with your custom model | |
| # generator = pipeline('text-generation', model='fadodr/finetuned_mental_health_therapy_original', quantization_config=config) | |
| # # Generate text based on the input message | |
| # def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| # prompt = f""" | |
| # ### Input: | |
| # {message} | |
| # ### Instruction: | |
| # {system_message} | |
| # ### Response: | |
| # """ | |
| # response = generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p) | |
| # print(response) | |
| # yield response[0]['generated_text'] | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="I need your help as a mental health therapist", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |