Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Union | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| from seamless_communication.models.inference.translator import Translator | |
| from lang_list import ( | |
| LANGUAGE_NAME_TO_CODE, | |
| S2ST_TARGET_LANGUAGE_NAMES, | |
| S2TT_TARGET_LANGUAGE_NAMES, | |
| T2TT_TARGET_LANGUAGE_NAMES, | |
| TEXT_SOURCE_LANGUAGE_NAMES, | |
| ) | |
| DESCRIPTION = """# SeamlessM4T | |
| [SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality | |
| translation, allowing people from different linguistic communities to communicate effortlessly through speech and text. | |
| This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST) | |
| translation and more, without relying on multiple separate models. | |
| """ | |
| CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" | |
| TASK_NAMES = [ | |
| "S2ST (Speech to Speech translation)", | |
| "S2TT (Speech to Text translation)", | |
| "T2ST (Text to Speech translation)", | |
| "T2TT (Text to Text translation)", | |
| "ASR (Automatic Speech Recognition)", | |
| ] | |
| AUDIO_SAMPLE_RATE = 16000.0 | |
| MAX_INPUT_AUDIO_LENGTH = 60 # in seconds | |
| DEFAULT_TARGET_LANGUAGE = "French" | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| translator = Translator( | |
| model_name_or_card="seamlessM4T_large", | |
| vocoder_name_or_card="vocoder_36langs", | |
| device=device, | |
| sample_rate=AUDIO_SAMPLE_RATE, | |
| ) | |
| def predict( | |
| task_name: str, | |
| audio_source: str, | |
| input_audio_mic: Union[str, None], | |
| input_audio_file: Union[str, None], | |
| input_text: Union[str, None], | |
| source_language: Union[str, None], | |
| target_language: str, | |
| ) -> tuple[Union[tuple[int, np.ndarray], None], str]: | |
| task_name = task_name.split()[0] | |
| source_language_code = LANGUAGE_NAME_TO_CODE.get(source_language, None) | |
| target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
| if task_name in ["S2ST", "S2TT", "ASR"]: | |
| if audio_source == "microphone": | |
| input_data = input_audio_mic | |
| else: | |
| input_data = input_audio_file | |
| arr, org_sr = torchaudio.load(input_data) | |
| new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) | |
| max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
| if new_arr.shape[1] > max_length: | |
| new_arr = new_arr[:, :max_length] | |
| gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") | |
| torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) | |
| else: | |
| input_data = input_text | |
| text_out, wav, sr = translator.predict( | |
| input=input_data, | |
| task_str=task_name, | |
| tgt_lang=target_language_code, | |
| src_lang=source_language_code, | |
| ) | |
| if task_name in ["S2ST", "T2ST"]: | |
| return (sr, wav.cpu().detach().numpy()), text_out | |
| else: | |
| return None, text_out | |
| def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[str, str]: | |
| return predict( | |
| task_name="S2ST", | |
| audio_source="file", | |
| input_audio_mic=None, | |
| input_audio_file=input_audio_file, | |
| input_text=None, | |
| source_language=None, | |
| target_language=target_language, | |
| ) | |
| def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[str, str]: | |
| return predict( | |
| task_name="S2TT", | |
| audio_source="file", | |
| input_audio_mic=None, | |
| input_audio_file=input_audio_file, | |
| input_text=None, | |
| source_language=None, | |
| target_language=target_language, | |
| ) | |
| def process_t2st_example(input_text: str, source_language: str, target_language: str) -> tuple[str, str]: | |
| return predict( | |
| task_name="T2ST", | |
| audio_source="", | |
| input_audio_mic=None, | |
| input_audio_file=None, | |
| input_text=input_text, | |
| source_language=source_language, | |
| target_language=target_language, | |
| ) | |
| def process_t2tt_example(input_text: str, source_language: str, target_language: str) -> tuple[str, str]: | |
| return predict( | |
| task_name="T2TT", | |
| audio_source="", | |
| input_audio_mic=None, | |
| input_audio_file=None, | |
| input_text=input_text, | |
| source_language=source_language, | |
| target_language=target_language, | |
| ) | |
| def process_asr_example(input_audio_file: str, target_language: str) -> tuple[str, str]: | |
| return predict( | |
| task_name="ASR", | |
| audio_source="file", | |
| input_audio_mic=None, | |
| input_audio_file=input_audio_file, | |
| input_text=None, | |
| source_language=None, | |
| target_language=target_language, | |
| ) | |
| def update_audio_ui(audio_source: str) -> tuple[dict, dict]: | |
| mic = audio_source == "microphone" | |
| return ( | |
| gr.update(visible=mic, value=None), # input_audio_mic | |
| gr.update(visible=not mic, value=None), # input_audio_file | |
| ) | |
| def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]: | |
| task_name = task_name.split()[0] | |
| if task_name == "S2ST": | |
| return ( | |
| gr.update(visible=True), # audio_box | |
| gr.update(visible=False), # input_text | |
| gr.update(visible=False), # source_language | |
| gr.update( | |
| visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE | |
| ), # target_language | |
| ) | |
| elif task_name == "S2TT": | |
| return ( | |
| gr.update(visible=True), # audio_box | |
| gr.update(visible=False), # input_text | |
| gr.update(visible=False), # source_language | |
| gr.update( | |
| visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE | |
| ), # target_language | |
| ) | |
| elif task_name == "T2ST": | |
| return ( | |
| gr.update(visible=False), # audio_box | |
| gr.update(visible=True), # input_text | |
| gr.update(visible=True), # source_language | |
| gr.update( | |
| visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE | |
| ), # target_language | |
| ) | |
| elif task_name == "T2TT": | |
| return ( | |
| gr.update(visible=False), # audio_box | |
| gr.update(visible=True), # input_text | |
| gr.update(visible=True), # source_language | |
| gr.update( | |
| visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE | |
| ), # target_language | |
| ) | |
| elif task_name == "ASR": | |
| return ( | |
| gr.update(visible=True), # audio_box | |
| gr.update(visible=False), # input_text | |
| gr.update(visible=False), # source_language | |
| gr.update( | |
| visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE | |
| ), # target_language | |
| ) | |
| else: | |
| raise ValueError(f"Unknown task: {task_name}") | |
| def update_output_ui(task_name: str) -> tuple[dict, dict]: | |
| task_name = task_name.split()[0] | |
| if task_name in ["S2ST", "T2ST"]: | |
| return ( | |
| gr.update(visible=True, value=None), # output_audio | |
| gr.update(value=None), # output_text | |
| ) | |
| elif task_name in ["S2TT", "T2TT", "ASR"]: | |
| return ( | |
| gr.update(visible=False, value=None), # output_audio | |
| gr.update(value=None), # output_text | |
| ) | |
| else: | |
| raise ValueError(f"Unknown task: {task_name}") | |
| def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]: | |
| task_name = task_name.split()[0] | |
| return ( | |
| gr.update(visible=task_name == "S2ST"), # s2st_example_row | |
| gr.update(visible=task_name == "S2TT"), # s2tt_example_row | |
| gr.update(visible=task_name == "T2ST"), # t2st_example_row | |
| gr.update(visible=task_name == "T2TT"), # t2tt_example_row | |
| gr.update(visible=task_name == "ASR"), # asr_example_row | |
| ) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton( | |
| value="Duplicate Space for private use", | |
| elem_id="duplicate-button", | |
| visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
| ) | |
| with gr.Group(): | |
| task_name = gr.Dropdown( | |
| label="Task", | |
| choices=TASK_NAMES, | |
| value=TASK_NAMES[0], | |
| ) | |
| with gr.Row(): | |
| source_language = gr.Dropdown( | |
| label="Source language", | |
| choices=TEXT_SOURCE_LANGUAGE_NAMES, | |
| value="English", | |
| visible=False, | |
| ) | |
| target_language = gr.Dropdown( | |
| label="Target language", | |
| choices=S2ST_TARGET_LANGUAGE_NAMES, | |
| value=DEFAULT_TARGET_LANGUAGE, | |
| ) | |
| with gr.Row() as audio_box: | |
| audio_source = gr.Radio( | |
| label="Audio source", | |
| choices=["file", "microphone"], | |
| value="file", | |
| ) | |
| input_audio_mic = gr.Audio( | |
| label="Input speech", | |
| type="filepath", | |
| source="microphone", | |
| visible=False, | |
| ) | |
| input_audio_file = gr.Audio( | |
| label="Input speech", | |
| type="filepath", | |
| source="upload", | |
| visible=True, | |
| ) | |
| input_text = gr.Textbox(label="Input text", visible=False) | |
| btn = gr.Button("Translate") | |
| with gr.Column(): | |
| output_audio = gr.Audio( | |
| label="Translated speech", | |
| autoplay=False, | |
| streaming=False, | |
| type="numpy", | |
| ) | |
| output_text = gr.Textbox(label="Translated text") | |
| with gr.Row(visible=True) as s2st_example_row: | |
| s2st_examples = gr.Examples( | |
| examples=[ | |
| ["assets/sample_input.mp3", "French"], | |
| ["assets/sample_input.mp3", "Mandarin Chinese"], | |
| ["assets/sample_input_2.mp3", "Hindi"], | |
| ["assets/sample_input_2.mp3", "Spanish"], | |
| ], | |
| inputs=[input_audio_file, target_language], | |
| outputs=[output_audio, output_text], | |
| fn=process_s2st_example, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| with gr.Row(visible=False) as s2tt_example_row: | |
| s2tt_examples = gr.Examples( | |
| examples=[ | |
| ["assets/sample_input.mp3", "French"], | |
| ["assets/sample_input.mp3", "Mandarin Chinese"], | |
| ["assets/sample_input_2.mp3", "Hindi"], | |
| ["assets/sample_input_2.mp3", "Spanish"], | |
| ], | |
| inputs=[input_audio_file, target_language], | |
| outputs=[output_audio, output_text], | |
| fn=process_s2tt_example, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| with gr.Row(visible=False) as t2st_example_row: | |
| t2st_examples = gr.Examples( | |
| examples=[ | |
| ["My favorite animal is the elephant.", "English", "French"], | |
| ["My favorite animal is the elephant.", "English", "Mandarin Chinese"], | |
| ["Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
| "English", "Hindi"], | |
| ["Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
| "English", "Spanish"], | |
| ], | |
| inputs=[input_text, source_language, target_language], | |
| outputs=[output_audio, output_text], | |
| fn=process_t2st_example, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| with gr.Row(visible=False) as t2tt_example_row: | |
| t2tt_examples = gr.Examples( | |
| examples=[ | |
| ["My favorite animal is the elephant.", "English", "French"], | |
| ["My favorite animal is the elephant.", "English", "Mandarin Chinese"], | |
| ["Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
| "English", "Hindi"], | |
| ["Meta AI's Seamless M4T model is democratising spoken communication across language barriers", | |
| "English", "Spanish"], | |
| ], | |
| inputs=[input_text, source_language, target_language], | |
| outputs=[output_audio, output_text], | |
| fn=process_t2tt_example, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| with gr.Row(visible=False) as asr_example_row: | |
| asr_examples = gr.Examples( | |
| examples=[ | |
| ["assets/sample_input.mp3", "English"], | |
| ["assets/sample_input_2.mp3", "English"], | |
| ], | |
| inputs=[input_audio_file, target_language], | |
| outputs=[output_audio, output_text], | |
| fn=process_asr_example, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| audio_source.change( | |
| fn=update_audio_ui, | |
| inputs=audio_source, | |
| outputs=[ | |
| input_audio_mic, | |
| input_audio_file, | |
| ], | |
| queue=False, | |
| api_name=False, | |
| ) | |
| task_name.change( | |
| fn=update_input_ui, | |
| inputs=task_name, | |
| outputs=[ | |
| audio_box, | |
| input_text, | |
| source_language, | |
| target_language, | |
| ], | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=update_output_ui, | |
| inputs=task_name, | |
| outputs=[output_audio, output_text], | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=update_example_ui, | |
| inputs=task_name, | |
| outputs=[ | |
| s2st_example_row, | |
| s2tt_example_row, | |
| t2st_example_row, | |
| t2tt_example_row, | |
| asr_example_row, | |
| ], | |
| queue=False, | |
| api_name=False, | |
| ) | |
| btn.click( | |
| fn=predict, | |
| inputs=[ | |
| task_name, | |
| audio_source, | |
| input_audio_mic, | |
| input_audio_file, | |
| input_text, | |
| source_language, | |
| target_language, | |
| ], | |
| outputs=[output_audio, output_text], | |
| api_name="run", | |
| ) | |
| demo.queue(max_size=50).launch() | |