Update with streaming input
Browse files- Dockerfile +5 -1
- app.py +54 -407
- requirements.txt +3 -1
Dockerfile
CHANGED
|
@@ -53,4 +53,8 @@ ENV PYTHONPATH=${HOME}/app \
|
|
| 53 |
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 54 |
GRADIO_THEME=huggingface \
|
| 55 |
SYSTEM=spaces
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 54 |
GRADIO_THEME=huggingface \
|
| 55 |
SYSTEM=spaces
|
| 56 |
+
|
| 57 |
+
# gradio instead of python for reload on file save with mountin pwd volume:
|
| 58 |
+
# docker run -p 7860:7860 -v $(pwd):/home/user/app seamless_m4t_text
|
| 59 |
+
CMD ["gradio", "app.py"]
|
| 60 |
+
# CMD ["python", "app.py"]
|
app.py
CHANGED
|
@@ -8,428 +8,75 @@ import torch
|
|
| 8 |
import torchaudio
|
| 9 |
from seamless_communication.models.inference.translator import Translator
|
| 10 |
|
| 11 |
-
from
|
| 12 |
-
LANGUAGE_NAME_TO_CODE,
|
| 13 |
-
S2ST_TARGET_LANGUAGE_NAMES,
|
| 14 |
-
S2TT_TARGET_LANGUAGE_NAMES,
|
| 15 |
-
T2TT_TARGET_LANGUAGE_NAMES,
|
| 16 |
-
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 17 |
-
)
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
| 25 |
-
translation and more, without relying on multiple separate models.
|
| 26 |
-
"""
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"T2TT (Text to Text translation)",
|
| 35 |
-
"ASR (Automatic Speech Recognition)",
|
| 36 |
-
]
|
| 37 |
-
AUDIO_SAMPLE_RATE = 16000.0
|
| 38 |
-
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
| 39 |
-
DEFAULT_TARGET_LANGUAGE = "French"
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def predict(
|
| 51 |
-
task_name: str,
|
| 52 |
-
audio_source: str,
|
| 53 |
-
input_audio_mic: str | None,
|
| 54 |
-
input_audio_file: str | None,
|
| 55 |
-
input_text: str | None,
|
| 56 |
-
source_language: str | None,
|
| 57 |
-
target_language: str,
|
| 58 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 59 |
-
task_name = task_name.split()[0]
|
| 60 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
| 61 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
| 62 |
-
|
| 63 |
-
if task_name in ["S2ST", "S2TT", "ASR"]:
|
| 64 |
-
if audio_source == "microphone":
|
| 65 |
-
input_data = input_audio_mic
|
| 66 |
-
else:
|
| 67 |
-
input_data = input_audio_file
|
| 68 |
-
|
| 69 |
-
arr, org_sr = torchaudio.load(input_data)
|
| 70 |
-
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
| 71 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
| 72 |
-
if new_arr.shape[1] > max_length:
|
| 73 |
-
new_arr = new_arr[:, :max_length]
|
| 74 |
-
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
| 75 |
-
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
| 76 |
-
else:
|
| 77 |
-
input_data = input_text
|
| 78 |
-
text_out, wav, sr = translator.predict(
|
| 79 |
-
input=input_data,
|
| 80 |
-
task_str=task_name,
|
| 81 |
-
tgt_lang=target_language_code,
|
| 82 |
-
src_lang=source_language_code,
|
| 83 |
-
ngram_filtering=True,
|
| 84 |
-
sample_rate=AUDIO_SAMPLE_RATE,
|
| 85 |
-
)
|
| 86 |
-
if task_name in ["S2ST", "T2ST"]:
|
| 87 |
-
return (sr, wav.cpu().detach().numpy()), text_out
|
| 88 |
-
else:
|
| 89 |
-
return None, text_out
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 93 |
-
return predict(
|
| 94 |
-
task_name="S2ST",
|
| 95 |
-
audio_source="file",
|
| 96 |
-
input_audio_mic=None,
|
| 97 |
-
input_audio_file=input_audio_file,
|
| 98 |
-
input_text=None,
|
| 99 |
-
source_language=None,
|
| 100 |
-
target_language=target_language,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 105 |
-
return predict(
|
| 106 |
-
task_name="S2TT",
|
| 107 |
-
audio_source="file",
|
| 108 |
-
input_audio_mic=None,
|
| 109 |
-
input_audio_file=input_audio_file,
|
| 110 |
-
input_text=None,
|
| 111 |
-
source_language=None,
|
| 112 |
-
target_language=target_language,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def process_t2st_example(
|
| 117 |
-
input_text: str, source_language: str, target_language: str
|
| 118 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 119 |
-
return predict(
|
| 120 |
-
task_name="T2ST",
|
| 121 |
-
audio_source="",
|
| 122 |
-
input_audio_mic=None,
|
| 123 |
-
input_audio_file=None,
|
| 124 |
-
input_text=input_text,
|
| 125 |
-
source_language=source_language,
|
| 126 |
-
target_language=target_language,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def process_t2tt_example(
|
| 131 |
-
input_text: str, source_language: str, target_language: str
|
| 132 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 133 |
-
return predict(
|
| 134 |
-
task_name="T2TT",
|
| 135 |
-
audio_source="",
|
| 136 |
-
input_audio_mic=None,
|
| 137 |
-
input_audio_file=None,
|
| 138 |
-
input_text=input_text,
|
| 139 |
-
source_language=source_language,
|
| 140 |
-
target_language=target_language,
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 145 |
-
return predict(
|
| 146 |
-
task_name="ASR",
|
| 147 |
-
audio_source="file",
|
| 148 |
-
input_audio_mic=None,
|
| 149 |
-
input_audio_file=input_audio_file,
|
| 150 |
-
input_text=None,
|
| 151 |
-
source_language=None,
|
| 152 |
-
target_language=target_language,
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
| 157 |
-
mic = audio_source == "microphone"
|
| 158 |
-
return (
|
| 159 |
-
gr.update(visible=mic, value=None), # input_audio_mic
|
| 160 |
-
gr.update(visible=not mic, value=None), # input_audio_file
|
| 161 |
-
)
|
| 162 |
|
| 163 |
|
| 164 |
-
def
|
| 165 |
-
|
| 166 |
-
if task_name == "S2ST":
|
| 167 |
-
return (
|
| 168 |
-
gr.update(visible=True), # audio_box
|
| 169 |
-
gr.update(visible=False), # input_text
|
| 170 |
-
gr.update(visible=False), # source_language
|
| 171 |
-
gr.update(
|
| 172 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 173 |
-
), # target_language
|
| 174 |
-
)
|
| 175 |
-
elif task_name == "S2TT":
|
| 176 |
-
return (
|
| 177 |
-
gr.update(visible=True), # audio_box
|
| 178 |
-
gr.update(visible=False), # input_text
|
| 179 |
-
gr.update(visible=False), # source_language
|
| 180 |
-
gr.update(
|
| 181 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 182 |
-
), # target_language
|
| 183 |
-
)
|
| 184 |
-
elif task_name == "T2ST":
|
| 185 |
-
return (
|
| 186 |
-
gr.update(visible=False), # audio_box
|
| 187 |
-
gr.update(visible=True), # input_text
|
| 188 |
-
gr.update(visible=True), # source_language
|
| 189 |
-
gr.update(
|
| 190 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 191 |
-
), # target_language
|
| 192 |
-
)
|
| 193 |
-
elif task_name == "T2TT":
|
| 194 |
-
return (
|
| 195 |
-
gr.update(visible=False), # audio_box
|
| 196 |
-
gr.update(visible=True), # input_text
|
| 197 |
-
gr.update(visible=True), # source_language
|
| 198 |
-
gr.update(
|
| 199 |
-
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 200 |
-
), # target_language
|
| 201 |
-
)
|
| 202 |
-
elif task_name == "ASR":
|
| 203 |
-
return (
|
| 204 |
-
gr.update(visible=True), # audio_box
|
| 205 |
-
gr.update(visible=False), # input_text
|
| 206 |
-
gr.update(visible=False), # source_language
|
| 207 |
-
gr.update(
|
| 208 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 209 |
-
), # target_language
|
| 210 |
-
)
|
| 211 |
-
else:
|
| 212 |
-
raise ValueError(f"Unknown task: {task_name}")
|
| 213 |
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
| 223 |
-
return (
|
| 224 |
-
gr.update(visible=False, value=None), # output_audio
|
| 225 |
-
gr.update(value=None), # output_text
|
| 226 |
-
)
|
| 227 |
-
else:
|
| 228 |
-
raise ValueError(f"Unknown task: {task_name}")
|
| 229 |
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
| 240 |
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
value="Duplicate Space for private use",
|
| 246 |
-
elem_id="duplicate-button",
|
| 247 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 248 |
-
)
|
| 249 |
-
with gr.Group():
|
| 250 |
-
task_name = gr.Dropdown(
|
| 251 |
-
label="Task",
|
| 252 |
-
choices=TASK_NAMES,
|
| 253 |
-
value=TASK_NAMES[0],
|
| 254 |
-
)
|
| 255 |
-
with gr.Row():
|
| 256 |
-
source_language = gr.Dropdown(
|
| 257 |
-
label="Source language",
|
| 258 |
-
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
| 259 |
-
value="English",
|
| 260 |
-
visible=False,
|
| 261 |
-
)
|
| 262 |
-
target_language = gr.Dropdown(
|
| 263 |
-
label="Target language",
|
| 264 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
| 265 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
| 266 |
-
)
|
| 267 |
-
with gr.Row() as audio_box:
|
| 268 |
-
audio_source = gr.Radio(
|
| 269 |
-
label="Audio source",
|
| 270 |
-
choices=["file", "microphone"],
|
| 271 |
-
value="file",
|
| 272 |
-
)
|
| 273 |
-
input_audio_mic = gr.Audio(
|
| 274 |
-
label="Input speech",
|
| 275 |
-
type="filepath",
|
| 276 |
-
source="microphone",
|
| 277 |
-
visible=False,
|
| 278 |
-
)
|
| 279 |
-
input_audio_file = gr.Audio(
|
| 280 |
-
label="Input speech",
|
| 281 |
-
type="filepath",
|
| 282 |
-
source="upload",
|
| 283 |
-
visible=True,
|
| 284 |
-
)
|
| 285 |
-
input_text = gr.Textbox(label="Input text", visible=False)
|
| 286 |
-
btn = gr.Button("Translate")
|
| 287 |
-
with gr.Column():
|
| 288 |
-
output_audio = gr.Audio(
|
| 289 |
-
label="Translated speech",
|
| 290 |
-
autoplay=False,
|
| 291 |
-
streaming=False,
|
| 292 |
-
type="numpy",
|
| 293 |
-
)
|
| 294 |
-
output_text = gr.Textbox(label="Translated text")
|
| 295 |
|
| 296 |
-
with gr.Row(visible=True) as s2st_example_row:
|
| 297 |
-
s2st_examples = gr.Examples(
|
| 298 |
-
examples=[
|
| 299 |
-
["assets/sample_input.mp3", "French"],
|
| 300 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
| 301 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
| 302 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
| 303 |
-
],
|
| 304 |
-
inputs=[input_audio_file, target_language],
|
| 305 |
-
outputs=[output_audio, output_text],
|
| 306 |
-
fn=process_s2st_example,
|
| 307 |
-
cache_examples=CACHE_EXAMPLES,
|
| 308 |
-
)
|
| 309 |
-
with gr.Row(visible=False) as s2tt_example_row:
|
| 310 |
-
s2tt_examples = gr.Examples(
|
| 311 |
-
examples=[
|
| 312 |
-
["assets/sample_input.mp3", "French"],
|
| 313 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
| 314 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
| 315 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
| 316 |
-
],
|
| 317 |
-
inputs=[input_audio_file, target_language],
|
| 318 |
-
outputs=[output_audio, output_text],
|
| 319 |
-
fn=process_s2tt_example,
|
| 320 |
-
cache_examples=CACHE_EXAMPLES,
|
| 321 |
-
)
|
| 322 |
-
with gr.Row(visible=False) as t2st_example_row:
|
| 323 |
-
t2st_examples = gr.Examples(
|
| 324 |
-
examples=[
|
| 325 |
-
["My favorite animal is the elephant.", "English", "French"],
|
| 326 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
| 327 |
-
[
|
| 328 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 329 |
-
"English",
|
| 330 |
-
"Hindi",
|
| 331 |
-
],
|
| 332 |
-
[
|
| 333 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 334 |
-
"English",
|
| 335 |
-
"Spanish",
|
| 336 |
-
],
|
| 337 |
-
],
|
| 338 |
-
inputs=[input_text, source_language, target_language],
|
| 339 |
-
outputs=[output_audio, output_text],
|
| 340 |
-
fn=process_t2st_example,
|
| 341 |
-
cache_examples=CACHE_EXAMPLES,
|
| 342 |
-
)
|
| 343 |
-
with gr.Row(visible=False) as t2tt_example_row:
|
| 344 |
-
t2tt_examples = gr.Examples(
|
| 345 |
-
examples=[
|
| 346 |
-
["My favorite animal is the elephant.", "English", "French"],
|
| 347 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
| 348 |
-
[
|
| 349 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 350 |
-
"English",
|
| 351 |
-
"Hindi",
|
| 352 |
-
],
|
| 353 |
-
[
|
| 354 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 355 |
-
"English",
|
| 356 |
-
"Spanish",
|
| 357 |
-
],
|
| 358 |
-
],
|
| 359 |
-
inputs=[input_text, source_language, target_language],
|
| 360 |
-
outputs=[output_audio, output_text],
|
| 361 |
-
fn=process_t2tt_example,
|
| 362 |
-
cache_examples=CACHE_EXAMPLES,
|
| 363 |
-
)
|
| 364 |
-
with gr.Row(visible=False) as asr_example_row:
|
| 365 |
-
asr_examples = gr.Examples(
|
| 366 |
-
examples=[
|
| 367 |
-
["assets/sample_input.mp3", "English"],
|
| 368 |
-
["assets/sample_input_2.mp3", "English"],
|
| 369 |
-
],
|
| 370 |
-
inputs=[input_audio_file, target_language],
|
| 371 |
-
outputs=[output_audio, output_text],
|
| 372 |
-
fn=process_asr_example,
|
| 373 |
-
cache_examples=CACHE_EXAMPLES,
|
| 374 |
-
)
|
| 375 |
|
| 376 |
-
|
| 377 |
-
fn=update_audio_ui,
|
| 378 |
-
inputs=audio_source,
|
| 379 |
-
outputs=[
|
| 380 |
-
input_audio_mic,
|
| 381 |
-
input_audio_file,
|
| 382 |
-
],
|
| 383 |
-
queue=False,
|
| 384 |
-
api_name=False,
|
| 385 |
-
)
|
| 386 |
-
task_name.change(
|
| 387 |
-
fn=update_input_ui,
|
| 388 |
-
inputs=task_name,
|
| 389 |
-
outputs=[
|
| 390 |
-
audio_box,
|
| 391 |
-
input_text,
|
| 392 |
-
source_language,
|
| 393 |
-
target_language,
|
| 394 |
-
],
|
| 395 |
-
queue=False,
|
| 396 |
-
api_name=False,
|
| 397 |
-
).then(
|
| 398 |
-
fn=update_output_ui,
|
| 399 |
-
inputs=task_name,
|
| 400 |
-
outputs=[output_audio, output_text],
|
| 401 |
-
queue=False,
|
| 402 |
-
api_name=False,
|
| 403 |
-
).then(
|
| 404 |
-
fn=update_example_ui,
|
| 405 |
-
inputs=task_name,
|
| 406 |
-
outputs=[
|
| 407 |
-
s2st_example_row,
|
| 408 |
-
s2tt_example_row,
|
| 409 |
-
t2st_example_row,
|
| 410 |
-
t2tt_example_row,
|
| 411 |
-
asr_example_row,
|
| 412 |
-
],
|
| 413 |
-
queue=False,
|
| 414 |
-
api_name=False,
|
| 415 |
-
)
|
| 416 |
|
| 417 |
-
btn.click(
|
| 418 |
-
fn=predict,
|
| 419 |
-
inputs=[
|
| 420 |
-
task_name,
|
| 421 |
-
audio_source,
|
| 422 |
-
input_audio_mic,
|
| 423 |
-
input_audio_file,
|
| 424 |
-
input_text,
|
| 425 |
-
source_language,
|
| 426 |
-
target_language,
|
| 427 |
-
],
|
| 428 |
-
outputs=[output_audio, output_text],
|
| 429 |
-
api_name="run",
|
| 430 |
-
)
|
| 431 |
-
demo.queue(max_size=50).launch()
|
| 432 |
|
| 433 |
-
#
|
| 434 |
-
|
| 435 |
-
# 'facebook/SONAR'
|
|
|
|
| 8 |
import torchaudio
|
| 9 |
from seamless_communication.models.inference.translator import Translator
|
| 10 |
|
| 11 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
p = pipeline("automatic-speech-recognition")
|
| 14 |
|
| 15 |
+
from pydub import AudioSegment
|
| 16 |
+
import time
|
| 17 |
+
from time import sleep
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
def transcribe(audio, state=""):
|
| 21 |
+
# sleep(2)
|
| 22 |
+
print('state', state)
|
| 23 |
+
text = p(audio)["text"]
|
| 24 |
+
state += text + " "
|
| 25 |
+
return state
|
| 26 |
|
| 27 |
+
def blocks():
|
| 28 |
+
with gr.Blocks() as demo:
|
| 29 |
+
total_audio_bytes_state = gr.State(bytes())
|
| 30 |
+
total_text_state = gr.State("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3")
|
| 33 |
+
input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3", source="microphone", streaming=True)
|
| 34 |
+
with gr.Row():
|
| 35 |
+
with gr.Column():
|
| 36 |
+
stream_as_bytes_btn = gr.Button("Stream as Bytes")
|
| 37 |
+
stream_as_bytes_output = gr.Audio(format="bytes", streaming=True)
|
| 38 |
+
stream_output_text = gr.Textbox(label="Translated text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
+
def stream_bytes(audio_file, total_audio_bytes_state, total_text_state):
|
| 42 |
+
chunk_size = 30000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
print(f"audio_file {audio_file}, size {os.path.getsize(audio_file)}")
|
| 45 |
+
with open(audio_file, "rb") as f:
|
| 46 |
|
| 47 |
+
while True:
|
| 48 |
+
chunk = f.read(chunk_size)
|
| 49 |
+
if chunk:
|
| 50 |
+
total_audio_bytes_state += chunk
|
| 51 |
+
print('yielding chunk', len(chunk))
|
| 52 |
+
print('total audio bytes', len(total_audio_bytes_state))
|
| 53 |
+
print(f"Text state: {total_text_state}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# This does the whole thing every time
|
| 56 |
+
# total_text = transcribe(chunk, "")
|
| 57 |
+
# yield total_audio_bytes_state, total_text, total_audio_bytes_state, total_text_state
|
| 58 |
|
| 59 |
+
# This translates just the new part every time
|
| 60 |
+
total_text_state = transcribe(chunk, total_text_state)
|
| 61 |
+
total_text = total_text_state
|
| 62 |
+
# total_text = transcribe(chunk, total_text)
|
| 63 |
+
yield total_audio_bytes_state, total_text, total_audio_bytes_state, total_text_state
|
| 64 |
+
# sleep(3)
|
| 65 |
+
else:
|
| 66 |
+
break
|
| 67 |
+
def clear():
|
| 68 |
+
print('clearing')
|
| 69 |
+
return [bytes(), ""]
|
| 70 |
|
| 71 |
+
stream_as_bytes_btn.click(stream_bytes, [input_audio, total_audio_bytes_state, total_text_state], [stream_as_bytes_output, stream_output_text, total_audio_bytes_state, total_text_state])
|
| 72 |
|
| 73 |
+
input_audio.change(stream_bytes, [input_audio, total_audio_bytes_state, total_text_state], [stream_as_bytes_output, stream_output_text, total_audio_bytes_state, total_text_state])
|
| 74 |
+
input_audio.clear(clear, None, [total_audio_bytes_state, total_text_state])
|
| 75 |
+
input_audio.start_recording(clear, None, [total_audio_bytes_state, total_text_state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# if __name__ == "__main__":
|
| 82 |
+
blocks()
|
|
|
requirements.txt
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
fairseq2==0.1.0
|
| 2 |
git+https://github.com/facebookresearch/seamless_communication
|
| 3 |
-
gradio==3.
|
| 4 |
huggingface_hub==0.16.4
|
| 5 |
torch==2.0.1
|
| 6 |
torchaudio==2.0.2
|
|
|
|
|
|
|
|
|
| 1 |
fairseq2==0.1.0
|
| 2 |
git+https://github.com/facebookresearch/seamless_communication
|
| 3 |
+
gradio==3.41.0
|
| 4 |
huggingface_hub==0.16.4
|
| 5 |
torch==2.0.1
|
| 6 |
torchaudio==2.0.2
|
| 7 |
+
transformers==4.32.1
|
| 8 |
+
pydub
|