work with m4t model
Browse files- app.py +125 -57
- m4t_app.py +463 -0
app.py
CHANGED
|
@@ -11,73 +11,141 @@ from seamless_communication.models.inference.translator import Translator
|
|
| 11 |
|
| 12 |
from m4t_app import *
|
| 13 |
|
| 14 |
-
from transformers import pipeline
|
| 15 |
-
|
| 16 |
-
p = pipeline("automatic-speech-recognition")
|
| 17 |
-
|
| 18 |
from pydub import AudioSegment
|
| 19 |
import time
|
| 20 |
from time import sleep
|
| 21 |
|
| 22 |
-
m4t_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
def transcribe(audio, state=""):
|
| 25 |
-
# sleep(2)
|
| 26 |
-
print('state', state)
|
| 27 |
-
text = p(audio)["text"]
|
| 28 |
-
state += text + " "
|
| 29 |
-
return state
|
| 30 |
|
| 31 |
def blocks():
|
| 32 |
with gr.Blocks() as demo:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
# input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3")
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
demo.queue().launch()
|
| 83 |
|
|
|
|
| 11 |
|
| 12 |
from m4t_app import *
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from pydub import AudioSegment
|
| 15 |
import time
|
| 16 |
from time import sleep
|
| 17 |
|
| 18 |
+
# m4t_demo()
|
| 19 |
+
|
| 20 |
+
USE_M4T = True
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def translate_audio_file_segment(audio_file):
|
| 24 |
+
print("translate_m4t state")
|
| 25 |
+
|
| 26 |
+
return predict(
|
| 27 |
+
task_name="S2ST",
|
| 28 |
+
audio_source="microphone",
|
| 29 |
+
input_audio_mic=audio_file,
|
| 30 |
+
input_audio_file=None,
|
| 31 |
+
input_text="",
|
| 32 |
+
source_language="English",
|
| 33 |
+
target_language="Portuguese",
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def translate_m4t_callback(
|
| 38 |
+
audio_file, translated_audio_bytes_state, translated_text_state
|
| 39 |
+
):
|
| 40 |
+
translated_wav_segment, translated_text = translate_audio_file_segment(audio_file)
|
| 41 |
+
print('translated_audio_bytes_state', translated_audio_bytes_state)
|
| 42 |
+
print('translated_wav_segment', translated_wav_segment)
|
| 43 |
+
|
| 44 |
+
# combine translated wav into larger..
|
| 45 |
+
if type(translated_audio_bytes_state) is not tuple:
|
| 46 |
+
translated_audio_bytes_state = translated_wav_segment
|
| 47 |
+
else:
|
| 48 |
+
|
| 49 |
+
translated_audio_bytes_state = (translated_audio_bytes_state[0], np.append(translated_audio_bytes_state[1], translated_wav_segment[1]))
|
| 50 |
+
|
| 51 |
+
# translated_wav_segment[1]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
translated_text_state += " | " + str(translated_text)
|
| 55 |
+
return [
|
| 56 |
+
audio_file,
|
| 57 |
+
translated_wav_segment,
|
| 58 |
+
translated_audio_bytes_state,
|
| 59 |
+
translated_text_state,
|
| 60 |
+
translated_audio_bytes_state,
|
| 61 |
+
translated_text_state,
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def clear():
|
| 66 |
+
print("Clearing State")
|
| 67 |
+
return [bytes(), ""]
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
def blocks():
|
| 71 |
with gr.Blocks() as demo:
|
| 72 |
+
translated_audio_bytes_state = gr.State(None)
|
| 73 |
+
translated_text_state = gr.State("")
|
| 74 |
|
| 75 |
# input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3")
|
| 76 |
+
if USE_M4T:
|
| 77 |
+
input_audio = gr.Audio(
|
| 78 |
+
label="Input Audio",
|
| 79 |
+
type="filepath",
|
| 80 |
+
source="microphone",
|
| 81 |
+
streaming=True,
|
| 82 |
+
)
|
| 83 |
+
else:
|
| 84 |
+
input_audio = gr.Audio(
|
| 85 |
+
label="Input Audio",
|
| 86 |
+
type="filepath",
|
| 87 |
+
format="mp3",
|
| 88 |
+
source="microphone",
|
| 89 |
+
streaming=True,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
most_recent_input_audio_segment = gr.Audio(
|
| 93 |
+
label="Recent Input Audio Segment segments", format="bytes", streaming=True
|
| 94 |
+
)
|
| 95 |
+
# TODO: Should add combined input audio segments...
|
| 96 |
+
|
| 97 |
+
stream_as_bytes_btn = gr.Button("Translate most recent recording segment")
|
| 98 |
+
|
| 99 |
+
output_translation_segment = gr.Audio(
|
| 100 |
+
label="Translated audio segment",
|
| 101 |
+
autoplay=False,
|
| 102 |
+
streaming=True,
|
| 103 |
+
type="numpy",
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
output_translation_combined = gr.Audio(
|
| 107 |
+
label="Translated audio combined",
|
| 108 |
+
autoplay=False,
|
| 109 |
+
streaming=True,
|
| 110 |
+
type="numpy",
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Could add output text segment
|
| 114 |
+
stream_output_text = gr.Textbox(label="Translated text")
|
| 115 |
+
|
| 116 |
+
stream_as_bytes_btn.click(
|
| 117 |
+
translate_m4t_callback,
|
| 118 |
+
[input_audio, translated_audio_bytes_state, translated_text_state],
|
| 119 |
+
[
|
| 120 |
+
most_recent_input_audio_segment,
|
| 121 |
+
output_translation_segment,
|
| 122 |
+
output_translation_combined,
|
| 123 |
+
stream_output_text,
|
| 124 |
+
translated_audio_bytes_state,
|
| 125 |
+
translated_text_state,
|
| 126 |
+
],
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
input_audio.change(
|
| 130 |
+
translate_m4t_callback,
|
| 131 |
+
[input_audio, translated_audio_bytes_state, translated_text_state],
|
| 132 |
+
[
|
| 133 |
+
most_recent_input_audio_segment,
|
| 134 |
+
output_translation_segment,
|
| 135 |
+
output_translation_combined,
|
| 136 |
+
stream_output_text,
|
| 137 |
+
translated_audio_bytes_state,
|
| 138 |
+
translated_text_state,
|
| 139 |
+
],
|
| 140 |
+
)
|
| 141 |
+
# input_audio.change(stream_bytes, [input_audio, translated_audio_bytes_state, translated_text_state], [most_recent_input_audio_segment, stream_output_text, translated_audio_bytes_state, translated_text_state])
|
| 142 |
+
# input_audio.change(lambda input_audio: recorded_audio, [input_audio], [recorded_audio])
|
| 143 |
+
input_audio.clear(
|
| 144 |
+
clear, None, [translated_audio_bytes_state, translated_text_state]
|
| 145 |
+
)
|
| 146 |
+
input_audio.start_recording(
|
| 147 |
+
clear, None, [translated_audio_bytes_state, translated_text_state]
|
| 148 |
+
)
|
| 149 |
|
| 150 |
demo.queue().launch()
|
| 151 |
|
m4t_app.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torchaudio
|
| 9 |
+
from seamless_communication.models.inference.translator import Translator
|
| 10 |
+
|
| 11 |
+
from lang_list import (
|
| 12 |
+
LANGUAGE_NAME_TO_CODE,
|
| 13 |
+
S2ST_TARGET_LANGUAGE_NAMES,
|
| 14 |
+
S2TT_TARGET_LANGUAGE_NAMES,
|
| 15 |
+
T2TT_TARGET_LANGUAGE_NAMES,
|
| 16 |
+
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
DESCRIPTION = """# SeamlessM4T
|
| 20 |
+
|
| 21 |
+
# mduppes aaaaaa
|
| 22 |
+
|
| 23 |
+
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
| 24 |
+
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
| 25 |
+
|
| 26 |
+
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
| 27 |
+
translation and more, without relying on multiple separate models.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
|
| 31 |
+
|
| 32 |
+
TASK_NAMES = [
|
| 33 |
+
"S2ST (Speech to Speech translation)",
|
| 34 |
+
"S2TT (Speech to Text translation)",
|
| 35 |
+
"T2ST (Text to Speech translation)",
|
| 36 |
+
"T2TT (Text to Text translation)",
|
| 37 |
+
"ASR (Automatic Speech Recognition)",
|
| 38 |
+
]
|
| 39 |
+
AUDIO_SAMPLE_RATE = 16000.0
|
| 40 |
+
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
| 41 |
+
DEFAULT_TARGET_LANGUAGE = "French"
|
| 42 |
+
|
| 43 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 44 |
+
print("DEVICE", device)
|
| 45 |
+
translator = Translator(
|
| 46 |
+
model_name_or_card="seamlessM4T_medium",
|
| 47 |
+
vocoder_name_or_card="vocoder_36langs",
|
| 48 |
+
device=device,
|
| 49 |
+
# dtype=torch.float16,
|
| 50 |
+
# For CPU Mode need to use 32, float16 causes errors downstream
|
| 51 |
+
dtype=torch.float32,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def get_translator():
|
| 55 |
+
return translator
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def transcribe(audio):
|
| 59 |
+
print(audio)
|
| 60 |
+
text = p(audio)["text"]
|
| 61 |
+
return text
|
| 62 |
+
|
| 63 |
+
def transcribe_state(audio, state = ""):
|
| 64 |
+
print(audio)
|
| 65 |
+
text = p(audio)["text"]
|
| 66 |
+
state += text + " "
|
| 67 |
+
return state, state
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def predict(
|
| 71 |
+
task_name: str,
|
| 72 |
+
audio_source: str,
|
| 73 |
+
input_audio_mic: str | None,
|
| 74 |
+
input_audio_file: str | None,
|
| 75 |
+
input_text: str | None,
|
| 76 |
+
source_language: str | None,
|
| 77 |
+
target_language: str,
|
| 78 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 79 |
+
task_name = task_name.split()[0]
|
| 80 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
| 81 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
| 82 |
+
|
| 83 |
+
if task_name in ["S2ST", "S2TT", "ASR"]:
|
| 84 |
+
if audio_source == "microphone":
|
| 85 |
+
input_data = input_audio_mic
|
| 86 |
+
else:
|
| 87 |
+
input_data = input_audio_file
|
| 88 |
+
|
| 89 |
+
arr, org_sr = torchaudio.load(input_data)
|
| 90 |
+
print(task_name, audio_source, input_audio_mic, type(input_audio_file), type(input_text), source_language, target_language)
|
| 91 |
+
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
| 92 |
+
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
| 93 |
+
if new_arr.shape[1] > max_length:
|
| 94 |
+
new_arr = new_arr[:, :max_length]
|
| 95 |
+
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
| 96 |
+
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
| 97 |
+
else:
|
| 98 |
+
input_data = input_text
|
| 99 |
+
text_out, wav, sr = translator.predict(
|
| 100 |
+
input=input_data,
|
| 101 |
+
task_str=task_name,
|
| 102 |
+
tgt_lang=target_language_code,
|
| 103 |
+
src_lang=source_language_code,
|
| 104 |
+
ngram_filtering=True,
|
| 105 |
+
sample_rate=AUDIO_SAMPLE_RATE,
|
| 106 |
+
)
|
| 107 |
+
print("translation response", text_out, wav, sr)
|
| 108 |
+
# text_out = "Testing"
|
| 109 |
+
# return None, text_out
|
| 110 |
+
if task_name in ["S2ST", "T2ST"]:
|
| 111 |
+
return (sr, wav.cpu().detach().numpy()), text_out
|
| 112 |
+
else:
|
| 113 |
+
return None, text_out
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 117 |
+
return predict(
|
| 118 |
+
task_name="S2ST",
|
| 119 |
+
audio_source="file",
|
| 120 |
+
input_audio_mic=None,
|
| 121 |
+
input_audio_file=input_audio_file,
|
| 122 |
+
input_text=None,
|
| 123 |
+
source_language=None,
|
| 124 |
+
target_language=target_language,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 129 |
+
return predict(
|
| 130 |
+
task_name="S2TT",
|
| 131 |
+
audio_source="file",
|
| 132 |
+
input_audio_mic=None,
|
| 133 |
+
input_audio_file=input_audio_file,
|
| 134 |
+
input_text=None,
|
| 135 |
+
source_language=None,
|
| 136 |
+
target_language=target_language,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def process_t2st_example(
|
| 141 |
+
input_text: str, source_language: str, target_language: str
|
| 142 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 143 |
+
return predict(
|
| 144 |
+
task_name="T2ST",
|
| 145 |
+
audio_source="",
|
| 146 |
+
input_audio_mic=None,
|
| 147 |
+
input_audio_file=None,
|
| 148 |
+
input_text=input_text,
|
| 149 |
+
source_language=source_language,
|
| 150 |
+
target_language=target_language,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def process_t2tt_example(
|
| 155 |
+
input_text: str, source_language: str, target_language: str
|
| 156 |
+
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 157 |
+
return predict(
|
| 158 |
+
task_name="T2TT",
|
| 159 |
+
audio_source="",
|
| 160 |
+
input_audio_mic=None,
|
| 161 |
+
input_audio_file=None,
|
| 162 |
+
input_text=input_text,
|
| 163 |
+
source_language=source_language,
|
| 164 |
+
target_language=target_language,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 169 |
+
return predict(
|
| 170 |
+
task_name="ASR",
|
| 171 |
+
audio_source="file",
|
| 172 |
+
input_audio_mic=None,
|
| 173 |
+
input_audio_file=input_audio_file,
|
| 174 |
+
input_text=None,
|
| 175 |
+
source_language=None,
|
| 176 |
+
target_language=target_language,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
| 181 |
+
mic = audio_source == "microphone"
|
| 182 |
+
return (
|
| 183 |
+
gr.update(visible=mic, value=None), # input_audio_mic
|
| 184 |
+
gr.update(visible=not mic, value=None), # input_audio_file
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
| 189 |
+
task_name = task_name.split()[0]
|
| 190 |
+
if task_name == "S2ST":
|
| 191 |
+
return (
|
| 192 |
+
gr.update(visible=True), # audio_box
|
| 193 |
+
gr.update(visible=False), # input_text
|
| 194 |
+
gr.update(visible=False), # source_language
|
| 195 |
+
gr.update(
|
| 196 |
+
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 197 |
+
), # target_language
|
| 198 |
+
)
|
| 199 |
+
elif task_name == "S2TT":
|
| 200 |
+
return (
|
| 201 |
+
gr.update(visible=True), # audio_box
|
| 202 |
+
gr.update(visible=False), # input_text
|
| 203 |
+
gr.update(visible=False), # source_language
|
| 204 |
+
gr.update(
|
| 205 |
+
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 206 |
+
), # target_language
|
| 207 |
+
)
|
| 208 |
+
elif task_name == "T2ST":
|
| 209 |
+
return (
|
| 210 |
+
gr.update(visible=False), # audio_box
|
| 211 |
+
gr.update(visible=True), # input_text
|
| 212 |
+
gr.update(visible=True), # source_language
|
| 213 |
+
gr.update(
|
| 214 |
+
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 215 |
+
), # target_language
|
| 216 |
+
)
|
| 217 |
+
elif task_name == "T2TT":
|
| 218 |
+
return (
|
| 219 |
+
gr.update(visible=False), # audio_box
|
| 220 |
+
gr.update(visible=True), # input_text
|
| 221 |
+
gr.update(visible=True), # source_language
|
| 222 |
+
gr.update(
|
| 223 |
+
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 224 |
+
), # target_language
|
| 225 |
+
)
|
| 226 |
+
elif task_name == "ASR":
|
| 227 |
+
return (
|
| 228 |
+
gr.update(visible=True), # audio_box
|
| 229 |
+
gr.update(visible=False), # input_text
|
| 230 |
+
gr.update(visible=False), # source_language
|
| 231 |
+
gr.update(
|
| 232 |
+
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
| 233 |
+
), # target_language
|
| 234 |
+
)
|
| 235 |
+
else:
|
| 236 |
+
raise ValueError(f"Unknown task: {task_name}")
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
| 240 |
+
task_name = task_name.split()[0]
|
| 241 |
+
if task_name in ["S2ST", "T2ST"]:
|
| 242 |
+
return (
|
| 243 |
+
gr.update(visible=True, value=None), # output_audio
|
| 244 |
+
gr.update(value=None), # output_text
|
| 245 |
+
)
|
| 246 |
+
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
| 247 |
+
return (
|
| 248 |
+
gr.update(visible=False, value=None), # output_audio
|
| 249 |
+
gr.update(value=None), # output_text
|
| 250 |
+
)
|
| 251 |
+
else:
|
| 252 |
+
raise ValueError(f"Unknown task: {task_name}")
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
| 256 |
+
task_name = task_name.split()[0]
|
| 257 |
+
return (
|
| 258 |
+
gr.update(visible=task_name == "S2ST"), # s2st_example_row
|
| 259 |
+
gr.update(visible=task_name == "S2TT"), # s2tt_example_row
|
| 260 |
+
gr.update(visible=task_name == "T2ST"), # t2st_example_row
|
| 261 |
+
gr.update(visible=task_name == "T2TT"), # t2tt_example_row
|
| 262 |
+
gr.update(visible=task_name == "ASR"), # asr_example_row
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
def m4t_demo():
|
| 266 |
+
|
| 267 |
+
with gr.Blocks(css="style.css") as demo:
|
| 268 |
+
gr.Markdown(DESCRIPTION)
|
| 269 |
+
gr.DuplicateButton(
|
| 270 |
+
value="Duplicate Space for private use",
|
| 271 |
+
elem_id="duplicate-button",
|
| 272 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
with gr.Group():
|
| 276 |
+
task_name = gr.Dropdown(
|
| 277 |
+
label="Task",
|
| 278 |
+
choices=TASK_NAMES,
|
| 279 |
+
value=TASK_NAMES[0],
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
with gr.Row():
|
| 284 |
+
source_language = gr.Dropdown(
|
| 285 |
+
label="Source language",
|
| 286 |
+
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
| 287 |
+
value="English",
|
| 288 |
+
visible=False,
|
| 289 |
+
)
|
| 290 |
+
target_language = gr.Dropdown(
|
| 291 |
+
label="Target language",
|
| 292 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
| 293 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
| 294 |
+
)
|
| 295 |
+
with gr.Row() as audio_box:
|
| 296 |
+
audio_source = gr.Radio(
|
| 297 |
+
label="Audio source",
|
| 298 |
+
choices=["file", "microphone"],
|
| 299 |
+
value="file",
|
| 300 |
+
)
|
| 301 |
+
input_audio_mic = gr.Audio(
|
| 302 |
+
label="Input speech",
|
| 303 |
+
type="filepath",
|
| 304 |
+
source="microphone",
|
| 305 |
+
visible=False,
|
| 306 |
+
)
|
| 307 |
+
input_audio_file = gr.Audio(
|
| 308 |
+
label="Input speech",
|
| 309 |
+
type="filepath",
|
| 310 |
+
source="upload",
|
| 311 |
+
visible=True,
|
| 312 |
+
)
|
| 313 |
+
input_text = gr.Textbox(label="Input text", visible=False)
|
| 314 |
+
btn = gr.Button("Translate")
|
| 315 |
+
with gr.Column():
|
| 316 |
+
output_audio = gr.Audio(
|
| 317 |
+
label="Translated speech",
|
| 318 |
+
autoplay=False,
|
| 319 |
+
streaming=False,
|
| 320 |
+
type="numpy",
|
| 321 |
+
)
|
| 322 |
+
output_text = gr.Textbox(label="Translated text")
|
| 323 |
+
|
| 324 |
+
with gr.Row(visible=True) as s2st_example_row:
|
| 325 |
+
s2st_examples = gr.Examples(
|
| 326 |
+
examples=[
|
| 327 |
+
["assets/sample_input.mp3", "French"],
|
| 328 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
| 329 |
+
["assets/sample_input_2.mp3", "Hindi"],
|
| 330 |
+
["assets/sample_input_2.mp3", "Spanish"],
|
| 331 |
+
],
|
| 332 |
+
inputs=[input_audio_file, target_language],
|
| 333 |
+
outputs=[output_audio, output_text],
|
| 334 |
+
fn=process_s2st_example,
|
| 335 |
+
cache_examples=CACHE_EXAMPLES,
|
| 336 |
+
)
|
| 337 |
+
with gr.Row(visible=False) as s2tt_example_row:
|
| 338 |
+
s2tt_examples = gr.Examples(
|
| 339 |
+
examples=[
|
| 340 |
+
["assets/sample_input.mp3", "French"],
|
| 341 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
| 342 |
+
["assets/sample_input_2.mp3", "Hindi"],
|
| 343 |
+
["assets/sample_input_2.mp3", "Spanish"],
|
| 344 |
+
],
|
| 345 |
+
inputs=[input_audio_file, target_language],
|
| 346 |
+
outputs=[output_audio, output_text],
|
| 347 |
+
fn=process_s2tt_example,
|
| 348 |
+
cache_examples=CACHE_EXAMPLES,
|
| 349 |
+
)
|
| 350 |
+
with gr.Row(visible=False) as t2st_example_row:
|
| 351 |
+
t2st_examples = gr.Examples(
|
| 352 |
+
examples=[
|
| 353 |
+
["My favorite animal is the elephant.", "English", "French"],
|
| 354 |
+
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
| 355 |
+
[
|
| 356 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 357 |
+
"English",
|
| 358 |
+
"Hindi",
|
| 359 |
+
],
|
| 360 |
+
[
|
| 361 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 362 |
+
"English",
|
| 363 |
+
"Spanish",
|
| 364 |
+
],
|
| 365 |
+
],
|
| 366 |
+
inputs=[input_text, source_language, target_language],
|
| 367 |
+
outputs=[output_audio, output_text],
|
| 368 |
+
fn=process_t2st_example,
|
| 369 |
+
cache_examples=CACHE_EXAMPLES,
|
| 370 |
+
)
|
| 371 |
+
with gr.Row(visible=False) as t2tt_example_row:
|
| 372 |
+
t2tt_examples = gr.Examples(
|
| 373 |
+
examples=[
|
| 374 |
+
["My favorite animal is the elephant.", "English", "French"],
|
| 375 |
+
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
| 376 |
+
[
|
| 377 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 378 |
+
"English",
|
| 379 |
+
"Hindi",
|
| 380 |
+
],
|
| 381 |
+
[
|
| 382 |
+
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
| 383 |
+
"English",
|
| 384 |
+
"Spanish",
|
| 385 |
+
],
|
| 386 |
+
],
|
| 387 |
+
inputs=[input_text, source_language, target_language],
|
| 388 |
+
outputs=[output_audio, output_text],
|
| 389 |
+
fn=process_t2tt_example,
|
| 390 |
+
cache_examples=CACHE_EXAMPLES,
|
| 391 |
+
)
|
| 392 |
+
with gr.Row(visible=False) as asr_example_row:
|
| 393 |
+
asr_examples = gr.Examples(
|
| 394 |
+
examples=[
|
| 395 |
+
["assets/sample_input.mp3", "English"],
|
| 396 |
+
["assets/sample_input_2.mp3", "English"],
|
| 397 |
+
],
|
| 398 |
+
inputs=[input_audio_file, target_language],
|
| 399 |
+
outputs=[output_audio, output_text],
|
| 400 |
+
fn=process_asr_example,
|
| 401 |
+
cache_examples=CACHE_EXAMPLES,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
audio_source.change(
|
| 405 |
+
fn=update_audio_ui,
|
| 406 |
+
inputs=audio_source,
|
| 407 |
+
outputs=[
|
| 408 |
+
input_audio_mic,
|
| 409 |
+
input_audio_file,
|
| 410 |
+
],
|
| 411 |
+
queue=False,
|
| 412 |
+
api_name=False,
|
| 413 |
+
)
|
| 414 |
+
task_name.change(
|
| 415 |
+
fn=update_input_ui,
|
| 416 |
+
inputs=task_name,
|
| 417 |
+
outputs=[
|
| 418 |
+
audio_box,
|
| 419 |
+
input_text,
|
| 420 |
+
source_language,
|
| 421 |
+
target_language,
|
| 422 |
+
],
|
| 423 |
+
queue=False,
|
| 424 |
+
api_name=False,
|
| 425 |
+
).then(
|
| 426 |
+
fn=update_output_ui,
|
| 427 |
+
inputs=task_name,
|
| 428 |
+
outputs=[output_audio, output_text],
|
| 429 |
+
queue=False,
|
| 430 |
+
api_name=False,
|
| 431 |
+
).then(
|
| 432 |
+
fn=update_example_ui,
|
| 433 |
+
inputs=task_name,
|
| 434 |
+
outputs=[
|
| 435 |
+
s2st_example_row,
|
| 436 |
+
s2tt_example_row,
|
| 437 |
+
t2st_example_row,
|
| 438 |
+
t2tt_example_row,
|
| 439 |
+
asr_example_row,
|
| 440 |
+
],
|
| 441 |
+
queue=False,
|
| 442 |
+
api_name=False,
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
btn.click(
|
| 446 |
+
fn=predict,
|
| 447 |
+
inputs=[
|
| 448 |
+
task_name,
|
| 449 |
+
audio_source,
|
| 450 |
+
input_audio_mic,
|
| 451 |
+
input_audio_file,
|
| 452 |
+
input_text,
|
| 453 |
+
source_language,
|
| 454 |
+
target_language,
|
| 455 |
+
],
|
| 456 |
+
outputs=[output_audio, output_text],
|
| 457 |
+
api_name="run",
|
| 458 |
+
)
|
| 459 |
+
demo.queue(max_size=50).launch()
|
| 460 |
+
|
| 461 |
+
# Linking models to the space
|
| 462 |
+
# 'facebook/seamless-m4t-large'
|
| 463 |
+
# 'facebook/SONAR'
|