import math from chromadb.test.property.strategies import NormalizedRecordSet, RecordSet from typing import Callable, Optional, Tuple, Union, List, TypeVar, cast from typing_extensions import Literal import numpy as np import numpy.typing as npt from chromadb.api import types from chromadb.api.models.Collection import Collection from hypothesis import note from hypothesis.errors import InvalidArgument from chromadb.utils import distance_functions T = TypeVar("T") def wrap(value: Union[T, List[T]]) -> List[T]: """Wrap a value in a list if it is not a list""" if value is None: raise InvalidArgument("value cannot be None") elif isinstance(value, List): return value else: return [value] def wrap_all(record_set: RecordSet) -> NormalizedRecordSet: """Ensure that an embedding set has lists for all its values""" embedding_list: Optional[types.Embeddings] if record_set["embeddings"] is None: embedding_list = None elif isinstance(record_set["embeddings"], list): assert record_set["embeddings"] is not None if len(record_set["embeddings"]) > 0 and not all( isinstance(embedding, list) for embedding in record_set["embeddings"] ): if all(isinstance(e, (int, float)) for e in record_set["embeddings"]): embedding_list = cast(types.Embeddings, [record_set["embeddings"]]) else: raise InvalidArgument("an embedding must be a list of floats or ints") else: embedding_list = cast(types.Embeddings, record_set["embeddings"]) else: raise InvalidArgument( "embeddings must be a list of lists, a list of numbers, or None" ) return { "ids": wrap(record_set["ids"]), "documents": wrap(record_set["documents"]) if record_set["documents"] is not None else None, "metadatas": wrap(record_set["metadatas"]) if record_set["metadatas"] is not None else None, "embeddings": embedding_list, } def count(collection: Collection, record_set: RecordSet) -> None: """The given collection count is equal to the number of embeddings""" count = collection.count() normalized_record_set = wrap_all(record_set) assert count == len(normalized_record_set["ids"]) def _field_matches( collection: Collection, normalized_record_set: NormalizedRecordSet, field_name: Union[ Literal["documents"], Literal["metadatas"], Literal["embeddings"] ], ) -> None: """ The actual embedding field is equal to the expected field field_name: one of [documents, metadatas] """ result = collection.get(ids=normalized_record_set["ids"], include=[field_name]) # The test_out_of_order_ids test fails because of this in test_add.py # Here we sort by the ids to match the input order embedding_id_to_index = {id: i for i, id in enumerate(normalized_record_set["ids"])} actual_field = result[field_name] if len(normalized_record_set["ids"]) == 0: assert isinstance(actual_field, list) and len(actual_field) == 0 return # This assert should never happen, if we include metadatas/documents it will be # [None, None..] if there is no metadata. It will not be just None. assert actual_field is not None sorted_field = sorted( enumerate(actual_field), key=lambda index_and_field_value: embedding_id_to_index[ result["ids"][index_and_field_value[0]] ], ) field_values = [field_value for _, field_value in sorted_field] expected_field = normalized_record_set[field_name] if expected_field is None: # Since an RecordSet is the user input, we need to convert the documents to # a List since thats what the API returns -> none per entry expected_field = [None] * len(normalized_record_set["ids"]) # type: ignore if field_name == "embeddings": assert np.allclose(np.array(field_values), np.array(expected_field)) else: assert field_values == expected_field def ids_match(collection: Collection, record_set: RecordSet) -> None: """The actual embedding ids is equal to the expected ids""" normalized_record_set = wrap_all(record_set) actual_ids = collection.get(ids=normalized_record_set["ids"], include=[])["ids"] # The test_out_of_order_ids test fails because of this in test_add.py # Here we sort the ids to match the input order embedding_id_to_index = {id: i for i, id in enumerate(normalized_record_set["ids"])} actual_ids = sorted(actual_ids, key=lambda id: embedding_id_to_index[id]) assert actual_ids == normalized_record_set["ids"] def metadatas_match(collection: Collection, record_set: RecordSet) -> None: """The actual embedding metadata is equal to the expected metadata""" normalized_record_set = wrap_all(record_set) _field_matches(collection, normalized_record_set, "metadatas") def documents_match(collection: Collection, record_set: RecordSet) -> None: """The actual embedding documents is equal to the expected documents""" normalized_record_set = wrap_all(record_set) _field_matches(collection, normalized_record_set, "documents") def embeddings_match(collection: Collection, record_set: RecordSet) -> None: """The actual embedding documents is equal to the expected documents""" normalized_record_set = wrap_all(record_set) _field_matches(collection, normalized_record_set, "embeddings") def no_duplicates(collection: Collection) -> None: ids = collection.get()["ids"] assert len(ids) == len(set(ids)) def _exact_distances( query: types.Embeddings, targets: types.Embeddings, distance_fn: Callable[ [npt.ArrayLike, npt.ArrayLike], float ] = distance_functions.l2, ) -> Tuple[List[List[int]], List[List[float]]]: """Return the ordered indices and distances from each query to each target""" np_query = np.array(query) np_targets = np.array(targets) # Compute the distance between each query and each target, using the distance function distances = np.apply_along_axis( lambda query: np.apply_along_axis(distance_fn, 1, np_targets, query), 1, np_query, ) # Sort the distances and return the indices return np.argsort(distances).tolist(), distances.tolist() def is_metadata_valid(normalized_record_set: NormalizedRecordSet) -> bool: if normalized_record_set["metadatas"] is None: return True return not any([len(m) == 0 for m in normalized_record_set["metadatas"]]) def ann_accuracy( collection: Collection, record_set: RecordSet, n_results: int = 1, min_recall: float = 0.99, embedding_function: Optional[types.EmbeddingFunction] = None, query_indices: Optional[List[int]] = None, ) -> None: """Validate that the API performs nearest_neighbor searches correctly""" normalized_record_set = wrap_all(record_set) if len(normalized_record_set["ids"]) == 0: return # nothing to test here embeddings: Optional[types.Embeddings] = normalized_record_set["embeddings"] have_embeddings = embeddings is not None and len(embeddings) > 0 if not have_embeddings: assert embedding_function is not None assert normalized_record_set["documents"] is not None assert isinstance(normalized_record_set["documents"], list) # Compute the embeddings for the documents embeddings = embedding_function(normalized_record_set["documents"]) # l2 is the default distance function distance_function = distance_functions.l2 accuracy_threshold = 1e-6 assert collection.metadata is not None assert embeddings is not None if "hnsw:space" in collection.metadata: space = collection.metadata["hnsw:space"] # TODO: ip and cosine are numerically unstable in HNSW. # The higher the dimensionality, the more noise is introduced, since each float element # of the vector has noise added, which is then subsequently included in all normalization calculations. # This means that higher dimensions will have more noise, and thus more error. assert all(isinstance(e, list) for e in embeddings) dim = len(embeddings[0]) accuracy_threshold = accuracy_threshold * math.pow(10, int(math.log10(dim))) if space == "cosine": distance_function = distance_functions.cosine if space == "ip": distance_function = distance_functions.ip # Perform exact distance computation query_embeddings = ( embeddings if query_indices is None else [embeddings[i] for i in query_indices] ) query_documents = normalized_record_set["documents"] if query_indices is not None and query_documents is not None: query_documents = [query_documents[i] for i in query_indices] indices, distances = _exact_distances( query_embeddings, embeddings, distance_fn=distance_function ) query_results = collection.query( query_embeddings=query_embeddings if have_embeddings else None, query_texts=query_documents if not have_embeddings else None, n_results=n_results, include=["embeddings", "documents", "metadatas", "distances"], ) assert query_results["distances"] is not None assert query_results["documents"] is not None assert query_results["metadatas"] is not None assert query_results["embeddings"] is not None # Dict of ids to indices id_to_index = {id: i for i, id in enumerate(normalized_record_set["ids"])} missing = 0 for i, (indices_i, distances_i) in enumerate(zip(indices, distances)): expected_ids = np.array(normalized_record_set["ids"])[indices_i[:n_results]] missing += len(set(expected_ids) - set(query_results["ids"][i])) # For each id in the query results, find the index in the embeddings set # and assert that the embeddings are the same for j, id in enumerate(query_results["ids"][i]): # This may be because the true nth nearest neighbor didn't get returned by the ANN query unexpected_id = id not in expected_ids index = id_to_index[id] correct_distance = np.allclose( distances_i[index], query_results["distances"][i][j], atol=accuracy_threshold, ) if unexpected_id: # If the ID is unexpcted, but the distance is correct, then we # have a duplicate in the data. In this case, we should not reduce recall. if correct_distance: missing -= 1 else: continue else: assert correct_distance assert np.allclose(embeddings[index], query_results["embeddings"][i][j]) if normalized_record_set["documents"] is not None: assert ( normalized_record_set["documents"][index] == query_results["documents"][i][j] ) if normalized_record_set["metadatas"] is not None: assert ( normalized_record_set["metadatas"][index] == query_results["metadatas"][i][j] ) size = len(normalized_record_set["ids"]) recall = (size - missing) / size try: note( f"recall: {recall}, missing {missing} out of {size}, accuracy threshold {accuracy_threshold}" ) except InvalidArgument: pass # it's ok if we're running outside hypothesis assert recall >= min_recall # Ensure that the query results are sorted by distance for distance_result in query_results["distances"]: assert np.allclose(np.sort(distance_result), distance_result)