Spaces:
Running
Running
| title: ROUGE | |
| emoji: 🤗 | |
| colorFrom: blue | |
| colorTo: red | |
| sdk: gradio | |
| sdk_version: 3.0.2 | |
| app_file: app.py | |
| pinned: false | |
| tags: | |
| - evaluate | |
| - metric | |
| description: >- | |
| ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for | |
| evaluating automatic summarization and machine translation software in natural language processing. | |
| The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. | |
| Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. | |
| This metrics is a wrapper around Google Research reimplementation of ROUGE: | |
| https://github.com/google-research/google-research/tree/master/rouge | |
| # Metric Card for ROUGE | |
| ## Metric Description | |
| ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. | |
| Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. | |
| This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge) | |
| ## How to Use | |
| At minimum, this metric takes as input a list of predictions and a list of references: | |
| ```python | |
| >>> rouge = evaluate.load('rouge') | |
| >>> predictions = ["hello there", "general kenobi"] | |
| >>> references = ["hello there", "general kenobi"] | |
| >>> results = rouge.compute(predictions=predictions, | |
| ... references=references) | |
| >>> print(results) | |
| {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0} | |
| ``` | |
| One can also pass a custom tokenizer which is especially useful for non-latin languages. | |
| ```python | |
| >>> results = rouge.compute(predictions=predictions, | |
| ... references=references, | |
| tokenizer=lambda x: x.split()) | |
| >>> print(results) | |
| {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0} | |
| ``` | |
| It can also deal with lists of references for each predictions: | |
| ```python | |
| >>> rouge = evaluate.load('rouge') | |
| >>> predictions = ["hello there", "general kenobi"] | |
| >>> references = [["hello", "there"], ["general kenobi", "general yoda"]] | |
| >>> results = rouge.compute(predictions=predictions, | |
| ... references=references) | |
| >>> print(results) | |
| {'rouge1': 0.8333, 'rouge2': 0.5, 'rougeL': 0.8333, 'rougeLsum': 0.8333}``` | |
| ### Inputs | |
| - **predictions** (`list`): list of predictions to score. Each prediction | |
| should be a string with tokens separated by spaces. | |
| - **references** (`list` or `list[list]`): list of reference for each prediction or a list of several references per prediction. Each | |
| reference should be a string with tokens separated by spaces. | |
| - **rouge_types** (`list`): A list of rouge types to calculate. Defaults to `['rouge1', 'rouge2', 'rougeL', 'rougeLsum']`. | |
| - Valid rouge types: | |
| - `"rouge1"`: unigram (1-gram) based scoring | |
| - `"rouge2"`: bigram (2-gram) based scoring | |
| - `"rougeL"`: Longest common subsequence based scoring. | |
| - `"rougeLSum"`: splits text using `"\n"` | |
| - See [here](https://github.com/huggingface/datasets/issues/617) for more information | |
| - **use_aggregator** (`boolean`): If True, returns aggregates. Defaults to `True`. | |
| - **use_stemmer** (`boolean`): If `True`, uses Porter stemmer to strip word suffixes. Defaults to `False`. | |
| ### Output Values | |
| The output is a dictionary with one entry for each rouge type in the input list `rouge_types`. If `use_aggregator=False`, each dictionary entry is a list of scores, with one score for each sentence. E.g. if `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=False`, the output is: | |
| ```python | |
| {'rouge1': [0.6666666666666666, 1.0], 'rouge2': [0.0, 1.0]} | |
| ``` | |
| If `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=True`, the output is of the following format: | |
| ```python | |
| {'rouge1': 1.0, 'rouge2': 1.0} | |
| ``` | |
| The ROUGE values are in the range of 0 to 1. | |
| #### Values from Popular Papers | |
| ### Examples | |
| An example without aggregation: | |
| ```python | |
| >>> rouge = evaluate.load('rouge') | |
| >>> predictions = ["hello goodbye", "ankh morpork"] | |
| >>> references = ["goodbye", "general kenobi"] | |
| >>> results = rouge.compute(predictions=predictions, | |
| ... references=references, | |
| ... use_aggregator=False) | |
| >>> print(list(results.keys())) | |
| ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] | |
| >>> print(results["rouge1"]) | |
| [0.5, 0.0] | |
| ``` | |
| The same example, but with aggregation: | |
| ```python | |
| >>> rouge = evaluate.load('rouge') | |
| >>> predictions = ["hello goodbye", "ankh morpork"] | |
| >>> references = ["goodbye", "general kenobi"] | |
| >>> results = rouge.compute(predictions=predictions, | |
| ... references=references, | |
| ... use_aggregator=True) | |
| >>> print(list(results.keys())) | |
| ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] | |
| >>> print(results["rouge1"]) | |
| 0.25 | |
| ``` | |
| The same example, but only calculating `rouge_1`: | |
| ```python | |
| >>> rouge = evaluate.load('rouge') | |
| >>> predictions = ["hello goodbye", "ankh morpork"] | |
| >>> references = ["goodbye", "general kenobi"] | |
| >>> results = rouge.compute(predictions=predictions, | |
| ... references=references, | |
| ... rouge_types=['rouge_1'], | |
| ... use_aggregator=True) | |
| >>> print(list(results.keys())) | |
| ['rouge1'] | |
| >>> print(results["rouge1"]) | |
| 0.25 | |
| ``` | |
| ## Limitations and Bias | |
| See [Schluter (2017)](https://aclanthology.org/E17-2007/) for an in-depth discussion of many of ROUGE's limits. | |
| ## Citation | |
| ```bibtex | |
| @inproceedings{lin-2004-rouge, | |
| title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", | |
| author = "Lin, Chin-Yew", | |
| booktitle = "Text Summarization Branches Out", | |
| month = jul, | |
| year = "2004", | |
| address = "Barcelona, Spain", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://www.aclweb.org/anthology/W04-1013", | |
| pages = "74--81", | |
| } | |
| ``` | |
| ## Further References | |
| - This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge) |