Spaces:
Running
on
Zero
Running
on
Zero
switch to loading with from_pretrained
Browse files- app.py +1 -2
- generator.py +4 -12
- models.py +17 -3
app.py
CHANGED
|
@@ -102,8 +102,7 @@ SPEAKER_PROMPTS = {
|
|
| 102 |
}
|
| 103 |
|
| 104 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 105 |
-
|
| 106 |
-
generator = load_csm_1b(model_path, device)
|
| 107 |
|
| 108 |
|
| 109 |
@spaces.GPU(duration=gpu_timeout)
|
|
|
|
| 102 |
}
|
| 103 |
|
| 104 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 105 |
+
generator = load_csm_1b(device=device)
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
@spaces.GPU(duration=gpu_timeout)
|
generator.py
CHANGED
|
@@ -5,7 +5,7 @@ from typing import List, Tuple
|
|
| 5 |
import torch
|
| 6 |
import torchaudio
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
-
from models import Model
|
| 9 |
from moshi.models import loaders
|
| 10 |
from tokenizers.processors import TemplateProcessing
|
| 11 |
from transformers import AutoTokenizer
|
|
@@ -166,17 +166,9 @@ class Generator:
|
|
| 166 |
return audio
|
| 167 |
|
| 168 |
|
| 169 |
-
def load_csm_1b(
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
decoder_flavor="llama-100M",
|
| 173 |
-
text_vocab_size=128256,
|
| 174 |
-
audio_vocab_size=2051,
|
| 175 |
-
audio_num_codebooks=32,
|
| 176 |
-
)
|
| 177 |
-
model = Model(model_args).to(device=device, dtype=torch.bfloat16)
|
| 178 |
-
state_dict = torch.load(ckpt_path)
|
| 179 |
-
model.load_state_dict(state_dict)
|
| 180 |
|
| 181 |
generator = Generator(model)
|
| 182 |
return generator
|
|
|
|
| 5 |
import torch
|
| 6 |
import torchaudio
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
+
from models import Model
|
| 9 |
from moshi.models import loaders
|
| 10 |
from tokenizers.processors import TemplateProcessing
|
| 11 |
from transformers import AutoTokenizer
|
|
|
|
| 166 |
return audio
|
| 167 |
|
| 168 |
|
| 169 |
+
def load_csm_1b(device: str = "cuda") -> Generator:
|
| 170 |
+
model = Model.from_pretrained("sesame/csm-1b")
|
| 171 |
+
model.to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
generator = Generator(model)
|
| 174 |
return generator
|
models.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torchtune
|
|
|
|
| 6 |
from torchtune.models import llama3_2
|
| 7 |
|
| 8 |
|
|
@@ -95,7 +96,20 @@ class ModelArgs:
|
|
| 95 |
audio_num_codebooks: int
|
| 96 |
|
| 97 |
|
| 98 |
-
class Model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def __init__(self, args: ModelArgs):
|
| 100 |
super().__init__()
|
| 101 |
self.args = args
|
|
@@ -110,7 +124,7 @@ class Model(nn.Module):
|
|
| 110 |
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
|
| 111 |
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size))
|
| 112 |
|
| 113 |
-
def setup_caches(self, max_batch_size: int) ->
|
| 114 |
"""Setup KV caches and return a causal mask."""
|
| 115 |
dtype = next(self.parameters()).dtype
|
| 116 |
device = next(self.parameters()).device
|
|
|
|
| 1 |
+
from dataclasses import asdict, dataclass
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torchtune
|
| 6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 7 |
from torchtune.models import llama3_2
|
| 8 |
|
| 9 |
|
|
|
|
| 96 |
audio_num_codebooks: int
|
| 97 |
|
| 98 |
|
| 99 |
+
class Model(
|
| 100 |
+
nn.Module,
|
| 101 |
+
PyTorchModelHubMixin,
|
| 102 |
+
repo_url="https://github.com/SesameAILabs/csm",
|
| 103 |
+
pipeline_tag="text-to-speech",
|
| 104 |
+
license="apache-2.0",
|
| 105 |
+
coders={
|
| 106 |
+
# Tells the class how to serialize and deserialize config.json
|
| 107 |
+
ModelArgs : (
|
| 108 |
+
lambda x: asdict(x), # Encoder: how to convert a `ModelArgs` to a valid jsonable value?
|
| 109 |
+
lambda data: ModelArgs(**data), # Decoder: how to reconstruct a `ModelArgs` from a dictionary?
|
| 110 |
+
)
|
| 111 |
+
}
|
| 112 |
+
):
|
| 113 |
def __init__(self, args: ModelArgs):
|
| 114 |
super().__init__()
|
| 115 |
self.args = args
|
|
|
|
| 124 |
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
|
| 125 |
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size))
|
| 126 |
|
| 127 |
+
def setup_caches(self, max_batch_size: int) -> None:
|
| 128 |
"""Setup KV caches and return a causal mask."""
|
| 129 |
dtype = next(self.parameters()).dtype
|
| 130 |
device = next(self.parameters()).device
|