import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE ) from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval # Define the task icons and names TASK_ICONS = { "TE": "📊", # Textual Entailment "SA": "😃", # Sentiment Analysis "HS": "⚠️", # Hate Speech "AT": "🏥", # Admission Test "WIC": "🔤", # Word in Context "FAQ": "❓", # Frequently Asked Questions "LS": "🔄", # Lexical Substitution "SU": "📝", # Summarization "NER": "🏷️", # Named Entity Recognition "REL": "🔗", # Relation Extraction } TASK_NAMES = { "TE": "Textual Entailment", "SA": "Sentiment Analysis", "HS": "Hate Speech", "AT": "Admission Test", "WIC": "Word in Context", "FAQ": "Frequently Asked Questions", "LS": "Lexical Substitution", "SU": "Summarization", "NER": "Named Entity Recognition", "REL": "Relation Extraction", } # Tooltip descriptions for each task TASK_TOOLTIPS = { "TE": "Identify logical relationships between two text segments.", "SA": "Classify the sentiment (positive, negative, neutral) of a text.", "HS": "Detect hate speech in a text.", "AT": "Classify whether a clinical statement pertains to an admission test.", "WIC": "Identify words in context and their meaning.", "FAQ": "Answer frequently asked questions based on given text.", "LS": "Identify alternative words in a given context.", "SU": "Summarize long text into a shorter version.", "NER": "Identify named entities (e.g., persons, locations, organizations) in text.", "REL": "Extract and link laboratory test results to the respective tests in clinical narratives.", } def restart_space(): """Restart the Hugging Face space.""" API.restart_space(repo_id=REPO_ID) def download_snapshot(repo, local_dir): """Try to download a snapshot from the Hugging Face Hub, restarting space on failure.""" try: print(f"Downloading from {repo} to {local_dir}...") snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN) except Exception as e: print(f"Error downloading {repo}: {e}") restart_space() # Space initialization download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH) download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH) # Load leaderboard and evaluation queue data LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def init_leaderboard(dataframe, default_selection=None, hidden_columns=None): """Initialize a leaderboard with specific columns.""" if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[ #ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="Few-Shot Learning (FS)"), #ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"), #ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True), ], bool_checkboxgroup_label="Hide models", interactive=False, ) def prepare_leaderboard_df(df, task_prefix): """Rename columns for a specific task to a standard format.""" return df.rename(columns={ f"{task_prefix} Prompt Average": "Prompt Average", f"{task_prefix} Best Prompt": "Best Prompt", f"{task_prefix} Best Prompt Id": "Best Prompt Id", task_prefix: "Combined Performance" }) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: # Main leaderboard tab with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"): leaderboard = init_leaderboard( LEADERBOARD_DF, default_selection=['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"], hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]] ) # About tab with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table"): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") ''' # Submission tab with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table"): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") for queue_name, queue_df in [ ("✅ Finished Evaluations", finished_eval_queue_df), ("🔄 Running Evaluation Queue", running_eval_queue_df), ("⏳ Pending Evaluation Queue", pending_eval_queue_df) ]: with gr.Accordion(f"{queue_name} ({len(queue_df)})", open=False): gr.components.Dataframe(value=queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5) gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") with gr.Row(): model_name_textbox = gr.Textbox(label="Model name") revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") model_type = gr.Dropdown(choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], label="Model type", multiselect=False, interactive=True) precision = gr.Dropdown(choices=[i.value.name for i in Precision if i != Precision.Unknown], label="Precision", multiselect=False, value="float16", interactive=True) weight_type = gr.Dropdown(choices=[i.value.name for i in WeightType], label="Weights type", multiselect=False, value="Original", interactive=True) base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type], submission_result, ) ''' # Task-specific leaderboards for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]: with gr.TabItem(f"{TASK_ICONS[task]}{task}", elem_id="llm-benchmark-tab-table"): task_description = TASK_DESCRIPTIONS.get(task, "Description not available.") gr.Markdown(task_description, elem_classes="markdown-text") gr.Markdown(MEASURE_DESCRIPTION, elem_classes="markdown-text") leaderboard = init_leaderboard( prepare_leaderboard_df(LEADERBOARD_DF, task), default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'], hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']] ) # Citation section with gr.Accordion("📙 Citation", open=False): gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True) # Background job to restart space scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()