Small changes
Browse files- src/leaderboard/read_evals.py +203 -95
- src/leaderboard/read_evals_old.py +0 -296
src/leaderboard/read_evals.py
CHANGED
@@ -1,95 +1,203 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
v.
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
#from get_model_info import num_params
|
11 |
+
from src.display.formatting import make_clickable_model
|
12 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, FewShotType
|
13 |
+
from src.submission.check_validity import is_model_on_hub
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class EvalResult:
|
18 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
19 |
+
"""
|
20 |
+
eval_name: str # org_model_precision (uid)
|
21 |
+
full_model: str # org/model (path on hub)
|
22 |
+
org: str
|
23 |
+
model: str
|
24 |
+
revision: str # commit hash, "" if main
|
25 |
+
results: dict
|
26 |
+
average_CPS: str
|
27 |
+
fewshot: int
|
28 |
+
fewshot_type: FewShotType = FewShotType.Unknown
|
29 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
30 |
+
architecture: str = "Unknown"
|
31 |
+
license: str = "?"
|
32 |
+
likes: int = 0
|
33 |
+
num_params: int = 0
|
34 |
+
date: str = "" # submission date of request file
|
35 |
+
still_on_hub: bool = False
|
36 |
+
|
37 |
+
@classmethod
|
38 |
+
def init_from_json_file(self, json_filepath):
|
39 |
+
"""Inits the result from the specific model result file"""
|
40 |
+
with open(json_filepath) as fp:
|
41 |
+
data = json.load(fp)
|
42 |
+
|
43 |
+
config = data.get("config")
|
44 |
+
|
45 |
+
average_CPS = f"{data.get('average_CPS'):.2f}"
|
46 |
+
|
47 |
+
num_fewshot = config.get("num_fewshot", 0) # Imposta il valore predefinito a 0
|
48 |
+
try:
|
49 |
+
num_fewshot = int(num_fewshot) # Converte in intero se possibile
|
50 |
+
except ValueError:
|
51 |
+
num_fewshot = 0 # Se la conversione fallisce, assegna 0
|
52 |
+
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
53 |
+
fewshot_type = FewShotType.from_num_fewshot(num_fewshot) # Use the new
|
54 |
+
|
55 |
+
num_params = int(0)
|
56 |
+
num_params_billion = config.get("num_params_billion")
|
57 |
+
if num_params_billion is not None:
|
58 |
+
num_params = math.ceil(num_params_billion)
|
59 |
+
|
60 |
+
# Get model and org
|
61 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
62 |
+
org_and_model = org_and_model.split("/", 1)
|
63 |
+
|
64 |
+
if len(org_and_model) == 1:
|
65 |
+
org = None
|
66 |
+
model = org_and_model[0]
|
67 |
+
#result_key = f"{model}_{precision.value.name}"
|
68 |
+
result_key = f"{model}_{num_fewshot}"
|
69 |
+
else:
|
70 |
+
org = org_and_model[0]
|
71 |
+
model = org_and_model[1]
|
72 |
+
#result_key = f"{org}_{model}_{precision.value.name}"
|
73 |
+
result_key = f"{org}_{model}_{num_fewshot}"
|
74 |
+
full_model = "/".join(org_and_model)
|
75 |
+
|
76 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
77 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
78 |
+
)
|
79 |
+
architecture = "?"
|
80 |
+
if model_config is not None:
|
81 |
+
architectures = getattr(model_config, "architectures", None)
|
82 |
+
if architectures:
|
83 |
+
architecture = ";".join(architectures)
|
84 |
+
|
85 |
+
# Extract results available in this file (some results are split in several files)
|
86 |
+
results = {}
|
87 |
+
for task in Tasks:
|
88 |
+
task = task.value
|
89 |
+
|
90 |
+
for k, v in data["tasks"].items():
|
91 |
+
if task.benchmark[:-2] == k:
|
92 |
+
if "Best Prompt Id" in task.col_name:
|
93 |
+
results[task.benchmark] = int(v[task.metric_type][-1:])
|
94 |
+
else:
|
95 |
+
results[task.benchmark] = f"{v[task.metric_type]:.2f}" # Ensure two decimals for display
|
96 |
+
|
97 |
+
return self(
|
98 |
+
eval_name=result_key,
|
99 |
+
full_model=full_model,
|
100 |
+
org=org,
|
101 |
+
model=model,
|
102 |
+
results=results,
|
103 |
+
average_CPS=average_CPS,
|
104 |
+
fewshot_type=fewshot_type,
|
105 |
+
fewshot=num_fewshot,
|
106 |
+
revision= config.get("model_sha", ""),
|
107 |
+
still_on_hub=still_on_hub,
|
108 |
+
architecture=architecture,
|
109 |
+
num_params=num_params
|
110 |
+
)
|
111 |
+
|
112 |
+
'''
|
113 |
+
def update_with_request_file(self, requests_path):
|
114 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
115 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
116 |
+
|
117 |
+
try:
|
118 |
+
with open(request_file, "r") as f:
|
119 |
+
request = json.load(f)
|
120 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
121 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
122 |
+
self.license = request.get("license", "?")
|
123 |
+
self.likes = request.get("likes", 0)
|
124 |
+
self.num_params = request.get("params", 0)
|
125 |
+
self.date = request.get("submitted_time", "")
|
126 |
+
except Exception:
|
127 |
+
print(f"Could not find request file for {self.org}/{self.model} with precision
|
128 |
+
'''
|
129 |
+
|
130 |
+
def to_dict(self):
|
131 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
132 |
+
average = self.average_CPS
|
133 |
+
|
134 |
+
fewshot_type_symbol = (
|
135 |
+
self.fewshot_type.value.symbol if isinstance(self.fewshot_type, FewShotType) else "❓"
|
136 |
+
)
|
137 |
+
|
138 |
+
data_dict = {
|
139 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
140 |
+
#AutoEvalColumn.precision.name: self.precision.value.name,
|
141 |
+
#AutoEvalColumn.model_type.name: self.model_type.value.name,
|
142 |
+
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
143 |
+
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
144 |
+
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
145 |
+
AutoEvalColumn.fewshot_type.name: fewshot_type_symbol, # Simbolo corretto per fewshot type
|
146 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
147 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
148 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
149 |
+
AutoEvalColumn.revision.name: self.revision,
|
150 |
+
AutoEvalColumn.average.name: average,
|
151 |
+
#AutoEvalColumn.fewshot.name: fewshot,
|
152 |
+
AutoEvalColumn.license.name: self.license,
|
153 |
+
AutoEvalColumn.likes.name: self.likes,
|
154 |
+
AutoEvalColumn.params.name: self.num_params,
|
155 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
156 |
+
}
|
157 |
+
|
158 |
+
for task in Tasks:
|
159 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
160 |
+
|
161 |
+
return data_dict
|
162 |
+
|
163 |
+
|
164 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
165 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
166 |
+
model_result_filepaths = []
|
167 |
+
|
168 |
+
for root, _, files in os.walk(results_path):
|
169 |
+
# We should only have json files in model results
|
170 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
171 |
+
continue
|
172 |
+
|
173 |
+
# Sort the files by date
|
174 |
+
try:
|
175 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
176 |
+
except dateutil.parser._parser.ParserError:
|
177 |
+
files = [files[-1]]
|
178 |
+
|
179 |
+
for file in files:
|
180 |
+
model_result_filepaths.append(os.path.join(root, file))
|
181 |
+
|
182 |
+
eval_results = {}
|
183 |
+
for model_result_filepath in model_result_filepaths:
|
184 |
+
# Creation of result
|
185 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
186 |
+
#eval_result.update_with_request_file(requests_path)
|
187 |
+
|
188 |
+
# Store results of same eval together
|
189 |
+
eval_name = eval_result.eval_name
|
190 |
+
if eval_name in eval_results.keys():
|
191 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
192 |
+
else:
|
193 |
+
eval_results[eval_name] = eval_result
|
194 |
+
|
195 |
+
results = []
|
196 |
+
for v in eval_results.values():
|
197 |
+
try:
|
198 |
+
v.to_dict() # we test if the dict version is complete
|
199 |
+
results.append(v)
|
200 |
+
except KeyError: # not all eval values present
|
201 |
+
continue
|
202 |
+
|
203 |
+
return results
|
src/leaderboard/read_evals_old.py
DELETED
@@ -1,296 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import dateutil
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
#from get_model_info import num_params
|
11 |
-
from src.display.formatting import make_clickable_model
|
12 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, FewShotType
|
13 |
-
from src.submission.check_validity import is_model_on_hub
|
14 |
-
|
15 |
-
|
16 |
-
@dataclass
|
17 |
-
class EvalResult:
|
18 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
19 |
-
"""
|
20 |
-
eval_name: str # org_model_precision (uid)
|
21 |
-
full_model: str # org/model (path on hub)
|
22 |
-
org: str
|
23 |
-
model: str
|
24 |
-
revision: str # commit hash, "" if main
|
25 |
-
results: dict
|
26 |
-
average_CPS: str
|
27 |
-
fewshot: int
|
28 |
-
#fewshot_type: str
|
29 |
-
#precision: Precision = Precision.Unknown
|
30 |
-
#model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
31 |
-
fewshot_type: FewShotType = FewShotType.Unknown
|
32 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
33 |
-
architecture: str = "Unknown"
|
34 |
-
license: str = "?"
|
35 |
-
likes: int = 0
|
36 |
-
num_params: int = 0
|
37 |
-
date: str = "" # submission date of request file
|
38 |
-
still_on_hub: bool = False
|
39 |
-
|
40 |
-
@classmethod
|
41 |
-
def init_from_json_file(self, json_filepath):
|
42 |
-
"""Inits the result from the specific model result file"""
|
43 |
-
with open(json_filepath) as fp:
|
44 |
-
data = json.load(fp)
|
45 |
-
|
46 |
-
config = data.get("config")
|
47 |
-
|
48 |
-
average_CPS = f"{data.get('average_CPS'):.2f}"
|
49 |
-
|
50 |
-
num_fewshot = config.get("num_fewshot", 0) # Imposta il valore predefinito a 0
|
51 |
-
try:
|
52 |
-
num_fewshot = int(num_fewshot) # Converte in intero se possibile
|
53 |
-
except ValueError:
|
54 |
-
num_fewshot = 0 # Se la conversione fallisce, assegna 0
|
55 |
-
|
56 |
-
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
57 |
-
fewshot_type = FewShotType.from_num_fewshot(num_fewshot) # Use the new
|
58 |
-
|
59 |
-
|
60 |
-
#precision = config.get("precision")
|
61 |
-
|
62 |
-
#print(precision)
|
63 |
-
|
64 |
-
#print(config, num_fewshot)
|
65 |
-
|
66 |
-
# Precision
|
67 |
-
#precision = Precision.from_str(config.get("model_dtype"))
|
68 |
-
|
69 |
-
model_type = config.get("model_type")
|
70 |
-
# Modifica: Convertire model_type in un oggetto Enum (se è un Enum)
|
71 |
-
model_type = ModelType.from_str(model_type) if model_type else None
|
72 |
-
|
73 |
-
#print("=====================", model_type, config.get("model_name"))
|
74 |
-
|
75 |
-
# Initialize num_params with a default value (e.g., 0)
|
76 |
-
num_params = int(0)
|
77 |
-
# Controlla se "num_params_billion" esiste in config e non è null
|
78 |
-
num_params_billion = config.get("num_params_billion")
|
79 |
-
if num_params_billion is not None:
|
80 |
-
num_params = math.ceil(num_params_billion)
|
81 |
-
|
82 |
-
print("^^^^^^^^^^^^^^^^^^^^^^^^^", num_params, config.get("num_params_billion"))
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Get model and org
|
87 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
88 |
-
org_and_model = org_and_model.split("/", 1)
|
89 |
-
|
90 |
-
#print(precision.value.name)
|
91 |
-
|
92 |
-
if len(org_and_model) == 1:
|
93 |
-
org = None
|
94 |
-
model = org_and_model[0]
|
95 |
-
#result_key = f"{model}_{precision.value.name}"
|
96 |
-
result_key = f"{model}_{num_fewshot}"
|
97 |
-
else:
|
98 |
-
org = org_and_model[0]
|
99 |
-
model = org_and_model[1]
|
100 |
-
#result_key = f"{org}_{model}_{precision.value.name}"
|
101 |
-
result_key = f"{org}_{model}_{num_fewshot}"
|
102 |
-
full_model = "/".join(org_and_model)
|
103 |
-
|
104 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
105 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
106 |
-
)
|
107 |
-
architecture = "?"
|
108 |
-
if model_config is not None:
|
109 |
-
architectures = getattr(model_config, "architectures", None)
|
110 |
-
if architectures:
|
111 |
-
architecture = ";".join(architectures)
|
112 |
-
|
113 |
-
# Extract results available in this file (some results are split in several files)
|
114 |
-
results = {}
|
115 |
-
for task in Tasks:
|
116 |
-
task = task.value
|
117 |
-
|
118 |
-
'''
|
119 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
120 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
121 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
122 |
-
continue
|
123 |
-
|
124 |
-
mean_acc = np.mean(accs) * 100.0
|
125 |
-
results[task.benchmark] = mean_acc
|
126 |
-
'''
|
127 |
-
|
128 |
-
for k, v in data["tasks"].items():
|
129 |
-
#if task.benchmark == k:
|
130 |
-
if task.benchmark[:-2] == k:
|
131 |
-
# print(k, "==================", v)
|
132 |
-
# results[task.benchmark] = v[task.cps]
|
133 |
-
|
134 |
-
#print(task.benchmark, v[task.metric])
|
135 |
-
|
136 |
-
if "Best Prompt Id" in task.col_name:
|
137 |
-
results[task.benchmark] = int(v[task.metric_type][-1:])
|
138 |
-
#print(results[task.benchmark],v[task.metric_type][-1:])
|
139 |
-
else:
|
140 |
-
#results[task.benchmark] = round(v[task.metric_type], 2)
|
141 |
-
# Format the value to 2 decimal places (ensure it's always shown as xx.xx)
|
142 |
-
results[task.benchmark] = f"{v[task.metric_type]:.2f}" # Ensure two decimals for display
|
143 |
-
|
144 |
-
|
145 |
-
#results[task.benchmark + "_" + task.metric] = 1.0
|
146 |
-
|
147 |
-
|
148 |
-
#results[task.benchmark] = v[task.accuracy]
|
149 |
-
# print("======", results[task.benchmark])
|
150 |
-
#results[task.benchmark] = 1.0
|
151 |
-
|
152 |
-
return self(
|
153 |
-
eval_name=result_key,
|
154 |
-
full_model=full_model,
|
155 |
-
org=org,
|
156 |
-
model=model,
|
157 |
-
results=results,
|
158 |
-
average_CPS=average_CPS,
|
159 |
-
fewshot_type=fewshot_type, # Set the fewshot type (ZS or FS)
|
160 |
-
fewshot=num_fewshot,
|
161 |
-
#model_type=model_type,
|
162 |
-
#precision=precision,
|
163 |
-
revision= config.get("model_sha", ""),
|
164 |
-
still_on_hub=still_on_hub,
|
165 |
-
architecture=architecture,
|
166 |
-
num_params=num_params
|
167 |
-
)
|
168 |
-
|
169 |
-
'''
|
170 |
-
def update_with_request_file(self, requests_path):
|
171 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
172 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
173 |
-
|
174 |
-
try:
|
175 |
-
with open(request_file, "r") as f:
|
176 |
-
request = json.load(f)
|
177 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
178 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
179 |
-
self.license = request.get("license", "?")
|
180 |
-
self.likes = request.get("likes", 0)
|
181 |
-
self.num_params = request.get("params", 0)
|
182 |
-
self.date = request.get("submitted_time", "")
|
183 |
-
except Exception:
|
184 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision
|
185 |
-
'''
|
186 |
-
|
187 |
-
def to_dict(self):
|
188 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
189 |
-
#average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
190 |
-
average = self.average_CPS
|
191 |
-
fewshot = self.fewshot
|
192 |
-
|
193 |
-
# Ottiene il simbolo di FewShotType in modo simile a ModelType
|
194 |
-
fewshot_type_symbol = (
|
195 |
-
self.fewshot_type.value.symbol if isinstance(self.fewshot_type, FewShotType) else "❓"
|
196 |
-
)
|
197 |
-
|
198 |
-
#("?????", fewshot)
|
199 |
-
data_dict = {
|
200 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
201 |
-
#AutoEvalColumn.precision.name: self.precision.value.name,
|
202 |
-
#AutoEvalColumn.model_type.name: self.model_type.value.name,
|
203 |
-
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
204 |
-
|
205 |
-
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
206 |
-
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
AutoEvalColumn.fewshot_type.name: fewshot_type_symbol, # Simbolo corretto per fewshot type
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
216 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
217 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
218 |
-
AutoEvalColumn.revision.name: self.revision,
|
219 |
-
AutoEvalColumn.average.name: average,
|
220 |
-
#AutoEvalColumn.fewshot.name: fewshot,
|
221 |
-
AutoEvalColumn.license.name: self.license,
|
222 |
-
AutoEvalColumn.likes.name: self.likes,
|
223 |
-
AutoEvalColumn.params.name: self.num_params,
|
224 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
225 |
-
}
|
226 |
-
|
227 |
-
for task in Tasks:
|
228 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
229 |
-
|
230 |
-
return data_dict
|
231 |
-
|
232 |
-
'''
|
233 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
234 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
235 |
-
request_files = os.path.join(
|
236 |
-
requests_path,
|
237 |
-
f"{model_name}_eval_request_*.json",
|
238 |
-
)
|
239 |
-
request_files = glob.glob(request_files)
|
240 |
-
|
241 |
-
# Select correct request file (precision)
|
242 |
-
request_file = ""
|
243 |
-
request_files = sorted(request_files, reverse=True)
|
244 |
-
for tmp_request_file in request_files:
|
245 |
-
with open(tmp_request_file, "r") as f:
|
246 |
-
req_content = json.load(f)
|
247 |
-
if (
|
248 |
-
req_content["status"] in ["FINISHED"]
|
249 |
-
and req_content["precision"] == precision.split(".")[-1]
|
250 |
-
):
|
251 |
-
request_file = tmp_request_file
|
252 |
-
return request_file
|
253 |
-
'''
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
258 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
259 |
-
model_result_filepaths = []
|
260 |
-
|
261 |
-
for root, _, files in os.walk(results_path):
|
262 |
-
# We should only have json files in model results
|
263 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
264 |
-
continue
|
265 |
-
|
266 |
-
# Sort the files by date
|
267 |
-
try:
|
268 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
269 |
-
except dateutil.parser._parser.ParserError:
|
270 |
-
files = [files[-1]]
|
271 |
-
|
272 |
-
for file in files:
|
273 |
-
model_result_filepaths.append(os.path.join(root, file))
|
274 |
-
|
275 |
-
eval_results = {}
|
276 |
-
for model_result_filepath in model_result_filepaths:
|
277 |
-
# Creation of result
|
278 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
279 |
-
#eval_result.update_with_request_file(requests_path)
|
280 |
-
|
281 |
-
# Store results of same eval together
|
282 |
-
eval_name = eval_result.eval_name
|
283 |
-
if eval_name in eval_results.keys():
|
284 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
285 |
-
else:
|
286 |
-
eval_results[eval_name] = eval_result
|
287 |
-
|
288 |
-
results = []
|
289 |
-
for v in eval_results.values():
|
290 |
-
try:
|
291 |
-
v.to_dict() # we test if the dict version is complete
|
292 |
-
results.append(v)
|
293 |
-
except KeyError: # not all eval values present
|
294 |
-
continue
|
295 |
-
|
296 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|