Refactor and optimize all interface chart code
Browse files- app.py +453 -669
- app_18_09_2025.py +823 -0
app.py
CHANGED
|
@@ -3,189 +3,232 @@ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
|
| 8 |
from src.display.css_html_js import custom_css
|
| 9 |
-
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields,
|
|
|
|
| 10 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 11 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 12 |
from src.submission.submit import add_new_eval
|
| 13 |
-
import random
|
| 14 |
import matplotlib.pyplot as plt
|
| 15 |
import re
|
| 16 |
import plotly.express as px
|
| 17 |
import plotly.graph_objects as go
|
| 18 |
import numpy as np
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
"""
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
#print(df.columns)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
# Calcola il massimo per ciascun campo
|
| 41 |
-
max_values = df[fields].max()
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
return mean_max
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
def barplot_mean_few_minus_zero_shot(dataframe, tasks=None):
|
| 50 |
-
if tasks is None:
|
| 51 |
-
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 52 |
|
| 53 |
-
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
few_shot = dataframe[dataframe['IS_FS'] == True][["Model", task]]
|
| 61 |
-
zero_shot = dataframe[dataframe['IS_FS'] == False][["Model", task]]
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
)])
|
| 87 |
-
|
| 88 |
-
# Linea di riferimento a 0
|
| 89 |
-
'''
|
| 90 |
-
fig.add_shape(
|
| 91 |
-
type="line",
|
| 92 |
-
x0=-0.5, x1=len(task_means) - 0.5,
|
| 93 |
-
y0=0, y1=0,
|
| 94 |
-
line=dict(color="black", width=2, dash="dash"),
|
| 95 |
-
xref="x", yref="y"
|
| 96 |
-
)
|
| 97 |
-
'''
|
| 98 |
|
|
|
|
| 99 |
fig.update_layout(
|
| 100 |
-
title="
|
| 101 |
-
xaxis_title="",
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
)
|
| 107 |
|
|
|
|
| 108 |
fig.add_annotation(
|
| 109 |
-
text="
|
| 110 |
-
"
|
| 111 |
-
xref="paper", yref="paper",
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
font=dict(size=11, color="gray"),
|
| 115 |
-
align="left"
|
| 116 |
)
|
| 117 |
|
| 118 |
-
|
|
|
|
| 119 |
|
|
|
|
| 120 |
|
| 121 |
-
def boxplot_per_task(dataframe=None, baselines=None, references=None):
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
|
| 125 |
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 126 |
|
|
|
|
| 127 |
if dataframe is None:
|
| 128 |
np.random.seed(42)
|
| 129 |
-
dataframe = pd.DataFrame({
|
| 130 |
-
task: np.random.uniform(0.4, 0.9, 20) * 100
|
| 131 |
-
for task in tasks
|
| 132 |
-
})
|
| 133 |
|
| 134 |
if baselines is None:
|
| 135 |
baselines = {task: np.random.randint(50, 70) for task in tasks}
|
| 136 |
|
|
|
|
|
|
|
|
|
|
| 137 |
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
| 138 |
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
|
| 139 |
|
| 140 |
fig = go.Figure()
|
| 141 |
|
| 142 |
for i, task in enumerate(tasks):
|
| 143 |
-
if task in dataframe.columns:
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
# boxplot
|
| 147 |
-
fig.add_trace(go.Box(
|
| 148 |
-
y=y_data,
|
| 149 |
-
name=task,
|
| 150 |
-
marker=dict(color=colors[i]),
|
| 151 |
-
line=dict(color="black", width=2),
|
| 152 |
-
fillcolor=colors[i],
|
| 153 |
-
opacity=0.7,
|
| 154 |
-
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 155 |
-
width=0.6,
|
| 156 |
-
whiskerwidth=0.2,
|
| 157 |
-
quartilemethod="linear"
|
| 158 |
-
))
|
| 159 |
-
|
| 160 |
-
# baseline
|
| 161 |
-
if task in baselines and baselines[task] is not None:
|
| 162 |
-
fig.add_shape(
|
| 163 |
-
type="line",
|
| 164 |
-
x0=i - 0.3, x1=i + 0.3,
|
| 165 |
-
y0=baselines[task], y1=baselines[task],
|
| 166 |
-
line=dict(color="black", width=2, dash="dot"), # più visibile
|
| 167 |
-
xref="x", yref="y"
|
| 168 |
-
)
|
| 169 |
-
'''
|
| 170 |
-
fig.add_annotation(
|
| 171 |
-
x=i, y=baselines[task],
|
| 172 |
-
text=f"{baselines[task]}%",
|
| 173 |
-
showarrow=False,
|
| 174 |
-
yshift=10,
|
| 175 |
-
font=dict(size=10, color="black")
|
| 176 |
-
)
|
| 177 |
-
'''
|
| 178 |
-
|
| 179 |
-
# reference GPT-4o
|
| 180 |
-
if task in references and references[task] is not None:
|
| 181 |
-
fig.add_shape(
|
| 182 |
-
type="line",
|
| 183 |
-
x0=i - 0.3, x1=i + 0.3,
|
| 184 |
-
y0=references[task], y1=references[task],
|
| 185 |
-
line=dict(color="red", width=2, dash="dashdot"),
|
| 186 |
-
xref="x", yref="y"
|
| 187 |
-
)
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
fig.update_layout(
|
| 190 |
title="Distribution of Model Accuracy by Task",
|
| 191 |
xaxis_title="Task",
|
|
@@ -194,9 +237,10 @@ def boxplot_per_task(dataframe=None, baselines=None, references=None):
|
|
| 194 |
boxmode="group",
|
| 195 |
dragmode=False,
|
| 196 |
font=dict(family="Arial", size=10),
|
| 197 |
-
margin=dict(b=80)
|
| 198 |
)
|
| 199 |
|
|
|
|
| 200 |
fig.add_annotation(
|
| 201 |
text=(
|
| 202 |
"In tasks like TE and SA, models approach the accuracy of supervised <br>"
|
|
@@ -207,416 +251,108 @@ def boxplot_per_task(dataframe=None, baselines=None, references=None):
|
|
| 207 |
x=0.5, y=-0.30,
|
| 208 |
showarrow=False,
|
| 209 |
font=dict(size=11, color="gray"),
|
| 210 |
-
align="
|
| 211 |
)
|
| 212 |
|
| 213 |
fig.update_yaxes(range=[0, 100], fixedrange=True)
|
|
|
|
| 214 |
|
| 215 |
return fig
|
| 216 |
|
| 217 |
-
# EVALITA results
|
| 218 |
-
BASELINES = {
|
| 219 |
-
"TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
|
| 220 |
-
"LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
|
| 221 |
-
}
|
| 222 |
-
|
| 223 |
-
# GPT-4o
|
| 224 |
-
REFERENCES = {
|
| 225 |
-
"NER": 79.11,
|
| 226 |
-
"REL": 63.32,
|
| 227 |
-
"LS": 59.25,
|
| 228 |
-
"SU": 33.04
|
| 229 |
-
|
| 230 |
-
}
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
def boxplot_prompts_per_task(dataframe, tasks=None):
|
| 234 |
-
if tasks is None:
|
| 235 |
-
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 236 |
-
|
| 237 |
-
# Lista delle colonne da aggiornare
|
| 238 |
-
cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 239 |
-
# Applichiamo la trasformazione
|
| 240 |
-
for col in cols_to_update:
|
| 241 |
-
dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
|
| 242 |
-
|
| 243 |
-
fig = go.Figure()
|
| 244 |
-
|
| 245 |
-
# Liste per creare una sola voce in legenda per Average e Best
|
| 246 |
-
avg_x, avg_y = [], []
|
| 247 |
-
best_x, best_y, best_text = [], [], []
|
| 248 |
-
|
| 249 |
-
for task in tasks:
|
| 250 |
-
avg_col = f"{task} Prompt Average"
|
| 251 |
-
best_col = f"{task} Best Prompt"
|
| 252 |
-
best_id_col = f"{task} Best Prompt Id"
|
| 253 |
-
|
| 254 |
-
if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
|
| 255 |
-
avg_value = dataframe[avg_col].mean()
|
| 256 |
-
avg_x.append(task)
|
| 257 |
-
avg_y.append(avg_value)
|
| 258 |
-
|
| 259 |
-
best_value = dataframe[best_col].mean()
|
| 260 |
-
best_x.append(task)
|
| 261 |
-
best_y.append(best_value)
|
| 262 |
-
best_id = dataframe[best_id_col].mode()[0] # Most frequent best prompt id
|
| 263 |
-
best_text.append(f"P:{best_id}")
|
| 264 |
-
|
| 265 |
-
# Barre Average Accuracy (azzurro)
|
| 266 |
-
fig.add_trace(go.Bar(
|
| 267 |
-
x=avg_x,
|
| 268 |
-
y=avg_y,
|
| 269 |
-
name="Avg. Accuracy",
|
| 270 |
-
marker_color="#1f77b4",
|
| 271 |
-
#hovertemplate="%{y:.2f}%<extra></extra>"
|
| 272 |
-
#hovertemplate="<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 273 |
-
))
|
| 274 |
-
|
| 275 |
-
# Barre Best Prompt (rosso)
|
| 276 |
-
fig.add_trace(go.Bar(
|
| 277 |
-
x=best_x,
|
| 278 |
-
y=best_y,
|
| 279 |
-
name="Best Prompt",
|
| 280 |
-
marker_color="#d62728",
|
| 281 |
-
#hovertemplate="%{y:.2f}%<extra></extra>"
|
| 282 |
-
#hovertemplate = "<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 283 |
-
))
|
| 284 |
-
|
| 285 |
-
# Testo sopra barre Best Prompt con ID
|
| 286 |
-
for x, y, text in zip(best_x, best_y, best_text):
|
| 287 |
-
fig.add_annotation(
|
| 288 |
-
x=x,
|
| 289 |
-
y=y + 3, # leggermente sopra la barra
|
| 290 |
-
text=text,
|
| 291 |
-
showarrow=False,
|
| 292 |
-
font=dict(size=12, color="black")
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
fig.update_layout(
|
| 296 |
-
title= "Prompt Accuracy: Avg vs Best",
|
| 297 |
-
xaxis_title="Task",
|
| 298 |
-
yaxis_title="Combined Performance",
|
| 299 |
-
barmode='group',
|
| 300 |
-
template="plotly_white",
|
| 301 |
-
font=dict(family="Arial", size=10),
|
| 302 |
-
yaxis=dict(range=[0, 100], fixedrange=True)
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
# caption come annotazione separata
|
| 306 |
-
fig.add_annotation(
|
| 307 |
-
text="There is no single prompt that performs best across all tasks.<br>"
|
| 308 |
-
"Different prompts achieve the highest accuracy on different tasks.",
|
| 309 |
-
xref="paper", yref="paper",
|
| 310 |
-
x=0.5, y=-0.3,
|
| 311 |
-
showarrow=False,
|
| 312 |
-
font=dict(size=11, color="gray"),
|
| 313 |
-
align="center",
|
| 314 |
-
xanchor="center"
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
return fig
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
def line_chart(dataframe):
|
| 321 |
-
|
| 322 |
-
# Normalizza le dimensioni per avere marker non troppo piccoli né enormi
|
| 323 |
-
def scale_sizes(values, min_size=8, max_size=30):
|
| 324 |
-
vmin, vmax = min(values), max(values)
|
| 325 |
-
return [
|
| 326 |
-
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
|
| 327 |
-
for val in values
|
| 328 |
-
]
|
| 329 |
-
|
| 330 |
-
# dati in base a IS_FS
|
| 331 |
-
df_true = dataframe[dataframe['IS_FS'] == True]
|
| 332 |
-
df_false = dataframe[dataframe['IS_FS'] == False]
|
| 333 |
-
|
| 334 |
-
# Estrai valori x, y e labels
|
| 335 |
-
x_true = df_true['#Params (B)'].tolist()
|
| 336 |
-
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
|
| 337 |
-
labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
|
| 338 |
-
|
| 339 |
-
x_false = df_false['#Params (B)'].tolist()
|
| 340 |
-
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
|
| 341 |
-
labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
|
| 342 |
-
|
| 343 |
-
fig = go.Figure()
|
| 344 |
-
|
| 345 |
-
# Punti IS_FS=True
|
| 346 |
-
fig.add_trace(go.Scatter(
|
| 347 |
-
x=x_true,
|
| 348 |
-
y=y_true,
|
| 349 |
-
mode='markers',
|
| 350 |
-
name='5-Shot',
|
| 351 |
-
marker=dict(
|
| 352 |
-
color='blue',
|
| 353 |
-
size=scale_sizes(x_true)
|
| 354 |
-
),
|
| 355 |
-
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 356 |
-
customdata=labels_true
|
| 357 |
-
))
|
| 358 |
-
|
| 359 |
-
# Punti IS_FS=False
|
| 360 |
-
fig.add_trace(go.Scatter(
|
| 361 |
-
x=x_false,
|
| 362 |
-
y=y_false,
|
| 363 |
-
mode='markers',
|
| 364 |
-
name='0-Shot',
|
| 365 |
-
marker=dict(
|
| 366 |
-
color='red',
|
| 367 |
-
size=scale_sizes(x_false)
|
| 368 |
-
),
|
| 369 |
-
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 370 |
-
customdata=labels_false
|
| 371 |
-
))
|
| 372 |
-
|
| 373 |
-
# Trova il massimo tra tutti i modelli
|
| 374 |
-
all_y = y_true + y_false
|
| 375 |
-
all_x = x_true + x_false
|
| 376 |
-
all_labels = labels_true + labels_false
|
| 377 |
-
max_idx = all_y.index(max(all_y))
|
| 378 |
-
max_x = all_x[max_idx]
|
| 379 |
-
max_y = all_y[max_idx]
|
| 380 |
-
max_label = all_labels[max_idx]
|
| 381 |
-
|
| 382 |
-
# Aggiungi annotazione visibile per il modello migliore
|
| 383 |
-
fig.add_annotation(
|
| 384 |
-
x=max_x,
|
| 385 |
-
y=max_y,
|
| 386 |
-
#text=f"Top: {max_label} ({max_y:.1f}%)",
|
| 387 |
-
text=f"{max_label}",
|
| 388 |
-
showarrow=True,
|
| 389 |
-
arrowhead=2,
|
| 390 |
-
arrowsize=1,
|
| 391 |
-
arrowwidth=2,
|
| 392 |
-
arrowcolor="black",
|
| 393 |
-
font=dict(size=11, color="black"),
|
| 394 |
-
xshift=10,
|
| 395 |
-
yshift=10,
|
| 396 |
-
ax = -30, ay = -20, # sposta la label a sinistra e sopra il punto
|
| 397 |
-
xanchor = "right" # allinea la label a destra rispetto al punto
|
| 398 |
-
)
|
| 399 |
-
|
| 400 |
-
fig.update_layout(
|
| 401 |
-
title="Avg. Combined Performance vs #Params",
|
| 402 |
-
xaxis_title="#Params (B)",
|
| 403 |
-
yaxis_title="Avg. Combined Performance",
|
| 404 |
-
template="plotly_white",
|
| 405 |
-
hovermode="closest",
|
| 406 |
-
font=dict(family="Arial", size=10),
|
| 407 |
-
dragmode=False,
|
| 408 |
-
xaxis=dict(
|
| 409 |
-
tickvals=[0, 25, 50, 75, 100, 125],
|
| 410 |
-
ticktext=["0", "25", "50", "75", "100"]
|
| 411 |
-
),
|
| 412 |
-
yaxis=dict(
|
| 413 |
-
tickvals=[0, 20, 40, 60, 80, 100], # 👈 tick fissi
|
| 414 |
-
range=[0, 100] # 👈 range bloccato
|
| 415 |
-
)
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
# Caption
|
| 419 |
-
fig.add_annotation(
|
| 420 |
-
text="Accuracy generally rises with #Params, but smaller models <br>"
|
| 421 |
-
"with 5-shot can outperform larger zero-shot models.",
|
| 422 |
-
xref="paper", yref="paper",
|
| 423 |
-
x=0.5, y=-0.3, # 👈 centrata
|
| 424 |
-
showarrow=False,
|
| 425 |
-
font=dict(size=11, color="gray"),
|
| 426 |
-
align="center",
|
| 427 |
-
xanchor="center" # 👈 ancora centrata rispetto al testo
|
| 428 |
-
)
|
| 429 |
-
|
| 430 |
-
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
| 431 |
-
fig.update_yaxes(fixedrange=True)
|
| 432 |
-
|
| 433 |
-
return fig
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
# Define task metadata (icons, names, descriptions)
|
| 437 |
-
TASK_METADATA_MULTIPLECHOICE = {
|
| 438 |
-
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
| 439 |
-
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
|
| 440 |
-
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
|
| 441 |
-
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
|
| 442 |
-
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
|
| 443 |
-
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
|
| 444 |
-
}
|
| 445 |
-
|
| 446 |
-
# Define task metadata (icons, names, descriptions)
|
| 447 |
-
TASK_METADATA_GENERATIVE = {
|
| 448 |
-
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
|
| 449 |
-
"SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
|
| 450 |
-
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
|
| 451 |
-
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
|
| 452 |
-
}
|
| 453 |
|
| 454 |
-
def
|
| 455 |
-
"""
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
"""
|
| 461 |
-
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
|
| 462 |
-
The table is sorted based on the "Avg. Combined Performance" field.
|
| 463 |
-
"""
|
| 464 |
-
if dataframe is None or dataframe.empty:
|
| 465 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 466 |
-
|
| 467 |
-
#print("????????????????????????????????", mean_of_max_per_field(dataframe))
|
| 468 |
-
|
| 469 |
-
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
|
| 470 |
-
|
| 471 |
-
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
| 472 |
-
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
| 473 |
|
| 474 |
-
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
|
| 475 |
-
large_medal_fs_assigned = False
|
| 476 |
-
medium_medal_fs_assigned = False
|
| 477 |
-
small_medal_fs_assigned = False
|
| 478 |
-
|
| 479 |
-
large_medal_0shot_assigned = False
|
| 480 |
-
medium_medal_0shot_assigned = False
|
| 481 |
-
small_medal_0shot_assigned = False
|
| 482 |
-
|
| 483 |
-
# Lista temporanea per salvare i nuovi valori della colonna Model
|
| 484 |
new_model_column = []
|
| 485 |
|
| 486 |
-
for _, row in
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
| 499 |
else: # 0-Shot
|
| 500 |
-
if
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
elif
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
elif
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
else:
|
| 510 |
-
new_model_column.append(row["Model"])
|
| 511 |
-
|
| 512 |
-
# Lista delle colonne da aggiornare
|
| 513 |
-
#cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 514 |
-
# Applichiamo la trasformazione
|
| 515 |
-
#for col in cols_to_update:
|
| 516 |
-
# dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
|
| 517 |
-
|
| 518 |
-
# Aggiorna la colonna Model
|
| 519 |
-
sorted_dataframe["Model"] = new_model_column
|
| 520 |
|
| 521 |
-
|
|
|
|
|
|
|
| 522 |
|
|
|
|
|
|
|
|
|
|
| 523 |
return Leaderboard(
|
| 524 |
value=sorted_dataframe,
|
| 525 |
datatype=[c.type for c in field_list],
|
| 526 |
-
#select_columns=SelectColumns(
|
| 527 |
-
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
|
| 528 |
-
# cant_deselect=[c.name for c in field_list if c.never_hidden],
|
| 529 |
-
# label="Select Columns to Display:",
|
| 530 |
-
#),
|
| 531 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 532 |
-
hide_columns=hidden_columns
|
| 533 |
filter_columns=[
|
| 534 |
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
|
| 538 |
],
|
| 539 |
-
#filter_columns=[
|
| 540 |
-
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
| 541 |
-
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
|
| 542 |
-
#],
|
| 543 |
bool_checkboxgroup_label="Evaluation Mode",
|
| 544 |
interactive=False,
|
| 545 |
)
|
| 546 |
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
The table is sorted based on the "Combined Performance" field.
|
| 551 |
-
"""
|
| 552 |
if dataframe is None or dataframe.empty:
|
| 553 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 554 |
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
# aggiungo la colonna rank in base alla posizione
|
| 558 |
-
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
| 559 |
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
| 560 |
|
| 561 |
-
#
|
| 562 |
-
|
| 563 |
-
medium_medal_fs_assigned = False
|
| 564 |
-
small_medal_fs_assigned = False
|
| 565 |
|
| 566 |
-
|
| 567 |
-
medium_medal_0shot_assigned = False
|
| 568 |
-
small_medal_0shot_assigned = False
|
| 569 |
|
| 570 |
-
|
| 571 |
-
new_model_column = []
|
| 572 |
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
new_model_column.append(row["Model"])
|
| 586 |
-
else: # 0-Shot
|
| 587 |
-
if row["Size"] == "🔵🔵🔵" and not large_medal_0shot_assigned:
|
| 588 |
-
new_model_column.append(f"{row['Model']} 🔵🔵🔵🎖️")
|
| 589 |
-
large_medal_0shot_assigned = True
|
| 590 |
-
elif row["Size"] == "🔵🔵" and not medium_medal_0shot_assigned:
|
| 591 |
-
new_model_column.append(f"{row['Model']} 🔵🔵🎖️")
|
| 592 |
-
medium_medal_0shot_assigned = True
|
| 593 |
-
elif row["Size"] == "🔵" and not small_medal_0shot_assigned:
|
| 594 |
-
new_model_column.append(f"{row['Model']} 🔵🎖️")
|
| 595 |
-
small_medal_0shot_assigned = True
|
| 596 |
-
else:
|
| 597 |
-
new_model_column.append(row["Model"])
|
| 598 |
-
|
| 599 |
-
# Aggiorna la colonna Model
|
| 600 |
-
sorted_dataframe["Model"] = new_model_column
|
| 601 |
-
|
| 602 |
-
pd.set_option('display.max_colwidth', None)
|
| 603 |
-
#print("========================", dataframe['Model'])
|
| 604 |
-
|
| 605 |
-
#print(sorted_dataframe['Combined Performance'])
|
| 606 |
|
| 607 |
field_list = fields(AutoEvalColumn)
|
| 608 |
|
| 609 |
return Leaderboard(
|
| 610 |
value=sorted_dataframe,
|
| 611 |
-
#datatype=[c.type for c in field_list],
|
| 612 |
datatype=[c.type for c in field_list] + [int],
|
| 613 |
-
#select_columns=SelectColumns(
|
| 614 |
-
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
|
| 615 |
-
# cant_deselect=[c.name for c in field_list if c.never_hidden],
|
| 616 |
-
# label="Select Columns to Display:",
|
| 617 |
-
#),
|
| 618 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 619 |
-
hide_columns=hidden_columns
|
| 620 |
filter_columns=[
|
| 621 |
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 622 |
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
|
@@ -626,106 +362,148 @@ def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=No
|
|
| 626 |
interactive=False
|
| 627 |
)
|
| 628 |
|
| 629 |
-
'''
|
| 630 |
-
# Helper function for leaderboard initialization
|
| 631 |
-
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 632 |
-
"""Initialize and return a leaderboard."""
|
| 633 |
-
if dataframe is None or dataframe.empty:
|
| 634 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 635 |
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
|
|
|
|
|
|
| 654 |
|
| 655 |
-
|
| 656 |
-
|
|
|
|
| 657 |
try:
|
| 658 |
-
|
| 659 |
-
|
| 660 |
except Exception as e:
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
"""
|
| 682 |
-
|
| 683 |
-
<
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
-webkit-text-fill-color: transparent;
|
| 692 |
-
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
|
| 693 |
-
">
|
| 694 |
-
EVALITA-LLM Leaderboard
|
| 695 |
-
</h1>
|
| 696 |
-
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
|
| 697 |
-
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
|
| 698 |
-
<!-- Icona stilizzata -->
|
| 699 |
-
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
|
| 700 |
-
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
|
| 701 |
-
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
|
| 702 |
-
</svg>
|
| 703 |
-
Open Italian LLM Leaderboard
|
| 704 |
-
</a>
|
| 705 |
-
</div>
|
| 706 |
-
"""
|
| 707 |
-
)
|
| 708 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 709 |
|
| 710 |
-
# ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
|
| 711 |
-
with gr.Row():
|
| 712 |
-
gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
| 713 |
-
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
|
| 714 |
-
#gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF), elem_id="boxplot-prompt-task")
|
| 715 |
|
| 716 |
-
|
|
|
|
|
|
|
|
|
|
| 717 |
|
| 718 |
-
|
| 719 |
-
with gr.TabItem("🏅 Benchmark"):
|
| 720 |
|
| 721 |
-
|
| 722 |
-
LEADERBOARD_DF,
|
| 723 |
-
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
| 724 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
| 725 |
-
)
|
| 726 |
|
| 727 |
-
|
| 728 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
<div style="
|
| 730 |
border: 2px solid #1f77b4;
|
| 731 |
border-radius: 10px;
|
|
@@ -735,89 +513,95 @@ with demo:
|
|
| 735 |
font-size: 14px;
|
| 736 |
display: inline-block;
|
| 737 |
">
|
| 738 |
-
Theoretical performance of a model that scores the highest on every individual task:
|
|
|
|
| 739 |
</div>
|
| 740 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 741 |
)
|
| 742 |
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
'''
|
| 752 |
-
|
| 753 |
-
# About tab
|
| 754 |
-
with gr.TabItem("📝 About"):
|
| 755 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 756 |
-
|
| 757 |
-
# About tab
|
| 758 |
-
with gr.TabItem("║", interactive=False):
|
| 759 |
-
gr.Markdown("", elem_classes="markdown-text")
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
# Task-specific leaderboards
|
| 763 |
-
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
| 764 |
-
|
| 765 |
-
with gr.TabItem(f"{metadata['icon']}{task}"):
|
| 766 |
-
|
| 767 |
-
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 768 |
-
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 769 |
-
|
| 770 |
-
leaderboard = update_task_leaderboard(
|
| 771 |
-
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
| 772 |
-
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
| 773 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
|
| 774 |
-
)
|
| 775 |
-
|
| 776 |
-
# About tab
|
| 777 |
-
with gr.TabItem("│", interactive=False):
|
| 778 |
-
gr.Markdown("", elem_classes="markdown-text")
|
| 779 |
-
|
| 780 |
-
# Task-specific leaderboards
|
| 781 |
-
for task, metadata in TASK_METADATA_GENERATIVE.items():
|
| 782 |
-
with gr.TabItem(f"{metadata['icon']}{task}"):
|
| 783 |
-
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 784 |
-
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 785 |
-
|
| 786 |
-
leaderboard = update_task_leaderboard(
|
| 787 |
-
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
|
| 788 |
-
f"{task} Prompt Std": "Prompt Std",
|
| 789 |
-
f"{task} Best Prompt": "Best Prompt",
|
| 790 |
-
f"{task} Best Prompt Id": "Best Prompt Id",
|
| 791 |
-
task: "Combined Performance"}),
|
| 792 |
-
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
|
| 793 |
-
'Best Prompt Id'],
|
| 794 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
| 795 |
-
col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
|
| 796 |
-
'Best Prompt', 'Best Prompt Id']]
|
| 797 |
-
)
|
| 798 |
-
|
| 799 |
-
# Citation section
|
| 800 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 801 |
-
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
|
| 802 |
-
|
| 803 |
-
with gr.Accordion("📙 Credits", open=False):
|
| 804 |
-
gr.Markdown(
|
| 805 |
-
"""
|
| 806 |
-
**This project has benefited from the following support:**
|
| 807 |
-
|
| 808 |
-
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
|
| 809 |
-
|
| 810 |
-
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
|
| 811 |
-
|
| 812 |
-
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
|
| 813 |
-
"""
|
| 814 |
-
)
|
| 815 |
|
| 816 |
-
# Background
|
| 817 |
scheduler = BackgroundScheduler()
|
| 818 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 819 |
scheduler.start()
|
| 820 |
|
| 821 |
-
# Launch
|
| 822 |
-
|
| 823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
|
| 10 |
+
LLM_BENCHMARKS_TEXT, TITLE
|
| 11 |
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
|
| 12 |
from src.display.css_html_js import custom_css
|
| 13 |
+
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
|
| 14 |
+
WeightType, Precision
|
| 15 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 16 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 17 |
from src.submission.submit import add_new_eval
|
|
|
|
| 18 |
import matplotlib.pyplot as plt
|
| 19 |
import re
|
| 20 |
import plotly.express as px
|
| 21 |
import plotly.graph_objects as go
|
| 22 |
import numpy as np
|
| 23 |
|
| 24 |
+
# Configure logging
|
| 25 |
+
logging.basicConfig(level=logging.INFO)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
+
# EVALITA results
|
| 29 |
+
BASELINES = {
|
| 30 |
+
"TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
|
| 31 |
+
"LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
|
| 32 |
+
}
|
| 33 |
|
| 34 |
+
# GPT-4o results
|
| 35 |
+
REFERENCES = {
|
| 36 |
+
"NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
|
| 37 |
+
}
|
| 38 |
|
| 39 |
+
TASK_METADATA_MULTIPLECHOICE = {
|
| 40 |
+
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
| 41 |
+
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
|
| 42 |
+
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
|
| 43 |
+
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
|
| 44 |
+
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
|
| 45 |
+
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
TASK_METADATA_GENERATIVE = {
|
| 49 |
+
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
|
| 50 |
+
"SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
|
| 51 |
+
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
|
| 52 |
+
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
|
| 53 |
+
}
|
| 54 |
|
|
|
|
| 55 |
|
| 56 |
+
def theoretical_performance(df_hash):
|
| 57 |
+
"""
|
| 58 |
+
Theoretical performance of a model that scores the highest on every individual task
|
| 59 |
+
"""
|
| 60 |
+
# This is a placeholder - you'd need to pass the actual dataframe
|
| 61 |
+
# In practice, you'd compute this once and store it
|
| 62 |
+
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 63 |
+
return 75.0 # Placeholder value
|
| 64 |
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
| 67 |
+
"""Normalize sizes for scatter plot markers """
|
| 68 |
+
if not values:
|
| 69 |
+
return []
|
| 70 |
+
vmin, vmax = min(values), max(values)
|
| 71 |
+
if vmax == vmin:
|
| 72 |
+
return [(min_size + max_size) / 2] * len(values)
|
| 73 |
+
return [
|
| 74 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
|
| 75 |
+
for val in values
|
| 76 |
+
]
|
| 77 |
|
|
|
|
| 78 |
|
| 79 |
+
def extract_model_name(model_string):
|
| 80 |
+
"""Extract model name from HTML string."""
|
| 81 |
+
match = re.search(r'>([^<]+)<', model_string)
|
| 82 |
+
return match.group(1) if match else model_string
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
def create_line_chart(dataframe):
|
| 86 |
+
"""Create left chart."""
|
| 87 |
|
| 88 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
| 89 |
+
vmin, vmax = min(values), max(values)
|
| 90 |
+
return [
|
| 91 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
|
| 92 |
+
else (min_size + max_size) / 2
|
| 93 |
+
for val in values
|
| 94 |
+
]
|
| 95 |
|
| 96 |
+
fig = go.Figure()
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
# Loop su 5-Shot e 0-Shot
|
| 99 |
+
for shot, color in [(True, "blue"), (False, "red")]:
|
| 100 |
+
df = dataframe[dataframe["IS_FS"] == shot]
|
| 101 |
|
| 102 |
+
x = df["#Params (B)"].tolist()
|
| 103 |
+
y = df["Avg. Comb. Perf. ⬆️"].tolist()
|
| 104 |
+
labels = [
|
| 105 |
+
re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
|
| 106 |
+
for m in df["Model"].tolist()
|
| 107 |
+
]
|
| 108 |
|
| 109 |
+
fig.add_trace(go.Scatter(
|
| 110 |
+
x=x,
|
| 111 |
+
y=y,
|
| 112 |
+
mode="markers",
|
| 113 |
+
name="5-Shot" if shot else "0-Shot",
|
| 114 |
+
marker=dict(color=color, size=scale_sizes(x)),
|
| 115 |
+
hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
|
| 116 |
+
customdata=labels,
|
| 117 |
+
))
|
| 118 |
+
|
| 119 |
+
# Show the best model
|
| 120 |
+
all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
|
| 121 |
+
if all_y:
|
| 122 |
+
max_idx = all_y.index(max(all_y))
|
| 123 |
+
max_x = dataframe["#Params (B)"].iloc[max_idx]
|
| 124 |
+
max_y = all_y[max_idx]
|
| 125 |
+
max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
|
| 126 |
|
| 127 |
+
fig.add_annotation(
|
| 128 |
+
x=max_x,
|
| 129 |
+
y=max_y,
|
| 130 |
+
text=max_label,
|
| 131 |
+
showarrow=True,
|
| 132 |
+
arrowhead=2,
|
| 133 |
+
arrowsize=1,
|
| 134 |
+
arrowwidth=2,
|
| 135 |
+
arrowcolor="black",
|
| 136 |
+
font=dict(size=11, color="black"),
|
| 137 |
+
xshift=10, yshift=10,
|
| 138 |
+
ax=-30, ay=-20,
|
| 139 |
+
xanchor="right"
|
| 140 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Layout
|
| 143 |
fig.update_layout(
|
| 144 |
+
title="Avg. Combined Performance vs #Params",
|
| 145 |
+
xaxis_title="#Params (B)", yaxis_title="Avg. Combined Performance",
|
| 146 |
+
template="plotly_white", hovermode="closest",
|
| 147 |
+
font=dict(family="Arial", size=10), dragmode=False,
|
| 148 |
+
xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
|
| 149 |
+
yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
|
| 150 |
)
|
| 151 |
|
| 152 |
+
# Caption
|
| 153 |
fig.add_annotation(
|
| 154 |
+
text="Accuracy generally rises with #Params, but smaller models <br>"
|
| 155 |
+
"with 5-shot can outperform larger zero-shot models.",
|
| 156 |
+
xref="paper", yref="paper", x=0.5, y=-0.3,
|
| 157 |
+
showarrow=False, font=dict(size=11, color="gray"),
|
| 158 |
+
align="center", xanchor="center"
|
|
|
|
|
|
|
| 159 |
)
|
| 160 |
|
| 161 |
+
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
| 162 |
+
fig.update_yaxes(fixedrange=True)
|
| 163 |
|
| 164 |
+
return fig
|
| 165 |
|
|
|
|
| 166 |
|
| 167 |
+
# Create right chart
|
| 168 |
+
def create_boxplot_task(dataframe=None, baselines=None, references=None):
|
| 169 |
+
"""Create right chart"""
|
| 170 |
|
| 171 |
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 172 |
|
| 173 |
+
# Dati di default se non forniti
|
| 174 |
if dataframe is None:
|
| 175 |
np.random.seed(42)
|
| 176 |
+
dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
if baselines is None:
|
| 179 |
baselines = {task: np.random.randint(50, 70) for task in tasks}
|
| 180 |
|
| 181 |
+
if references is None:
|
| 182 |
+
references = {}
|
| 183 |
+
|
| 184 |
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
| 185 |
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
|
| 186 |
|
| 187 |
fig = go.Figure()
|
| 188 |
|
| 189 |
for i, task in enumerate(tasks):
|
| 190 |
+
if task not in dataframe.columns:
|
| 191 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
y_data = dataframe[task].dropna().tolist()
|
| 194 |
+
|
| 195 |
+
# Boxplot
|
| 196 |
+
fig.add_trace(go.Box(
|
| 197 |
+
y=y_data,
|
| 198 |
+
name=task,
|
| 199 |
+
marker=dict(color=colors[i]),
|
| 200 |
+
line=dict(color="black", width=2),
|
| 201 |
+
fillcolor=colors[i],
|
| 202 |
+
opacity=0.7,
|
| 203 |
+
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 204 |
+
width=0.6,
|
| 205 |
+
whiskerwidth=0.2,
|
| 206 |
+
quartilemethod="linear"
|
| 207 |
+
))
|
| 208 |
+
|
| 209 |
+
# Linea baseline
|
| 210 |
+
baseline_value = baselines.get(task)
|
| 211 |
+
if baseline_value is not None:
|
| 212 |
+
fig.add_shape(
|
| 213 |
+
type="line",
|
| 214 |
+
x0=i - 0.3, x1=i + 0.3,
|
| 215 |
+
y0=baseline_value, y1=baseline_value,
|
| 216 |
+
line=dict(color="black", width=2, dash="dot"),
|
| 217 |
+
xref="x", yref="y"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Linea reference GPT-4o
|
| 221 |
+
reference_value = references.get(task)
|
| 222 |
+
if reference_value is not None:
|
| 223 |
+
fig.add_shape(
|
| 224 |
+
type="line",
|
| 225 |
+
x0=i - 0.3, x1=i + 0.3,
|
| 226 |
+
y0=reference_value, y1=reference_value,
|
| 227 |
+
line=dict(color="red", width=2, dash="dashdot"),
|
| 228 |
+
xref="x", yref="y"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Layout
|
| 232 |
fig.update_layout(
|
| 233 |
title="Distribution of Model Accuracy by Task",
|
| 234 |
xaxis_title="Task",
|
|
|
|
| 237 |
boxmode="group",
|
| 238 |
dragmode=False,
|
| 239 |
font=dict(family="Arial", size=10),
|
| 240 |
+
margin=dict(b=80)
|
| 241 |
)
|
| 242 |
|
| 243 |
+
# Caption
|
| 244 |
fig.add_annotation(
|
| 245 |
text=(
|
| 246 |
"In tasks like TE and SA, models approach the accuracy of supervised <br>"
|
|
|
|
| 251 |
x=0.5, y=-0.30,
|
| 252 |
showarrow=False,
|
| 253 |
font=dict(size=11, color="gray"),
|
| 254 |
+
align="center"
|
| 255 |
)
|
| 256 |
|
| 257 |
fig.update_yaxes(range=[0, 100], fixedrange=True)
|
| 258 |
+
fig.update_xaxes(fixedrange=True)
|
| 259 |
|
| 260 |
return fig
|
| 261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
def create_medal_assignments(sorted_df):
|
| 264 |
+
"""Function for medal assignment logic"""
|
| 265 |
+
medals = {
|
| 266 |
+
'large_fs': False, 'medium_fs': False, 'small_fs': False,
|
| 267 |
+
'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
|
| 268 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
new_model_column = []
|
| 271 |
|
| 272 |
+
for _, row in sorted_df.iterrows():
|
| 273 |
+
model_name = row['Model']
|
| 274 |
+
size = row["Size"]
|
| 275 |
+
is_fs = row['IS_FS']
|
| 276 |
+
|
| 277 |
+
if is_fs: # 5-Few-Shot
|
| 278 |
+
if size == "🔵🔵🔵" and not medals['large_fs']:
|
| 279 |
+
model_name = f"{model_name} 🔵🔵🔵🏆"
|
| 280 |
+
medals['large_fs'] = True
|
| 281 |
+
elif size == "🔵🔵" and not medals['medium_fs']:
|
| 282 |
+
model_name = f"{model_name} 🔵🔵🏆"
|
| 283 |
+
medals['medium_fs'] = True
|
| 284 |
+
elif size == "🔵" and not medals['small_fs']:
|
| 285 |
+
model_name = f"{model_name} 🔵🏆"
|
| 286 |
+
medals['small_fs'] = True
|
| 287 |
else: # 0-Shot
|
| 288 |
+
if size == "🔵🔵🔵" and not medals['large_0shot']:
|
| 289 |
+
model_name = f"{model_name} 🔵🔵🔵🎖️"
|
| 290 |
+
medals['large_0shot'] = True
|
| 291 |
+
elif size == "🔵🔵" and not medals['medium_0shot']:
|
| 292 |
+
model_name = f"{model_name} 🔵🔵🎖️"
|
| 293 |
+
medals['medium_0shot'] = True
|
| 294 |
+
elif size == "🔵" and not medals['small_0shot']:
|
| 295 |
+
model_name = f"{model_name} 🔵🎖️"
|
| 296 |
+
medals['small_0shot'] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
+
new_model_column.append(model_name)
|
| 299 |
+
|
| 300 |
+
return new_model_column
|
| 301 |
|
| 302 |
+
|
| 303 |
+
def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
|
| 304 |
+
"""Base leaderboard creation with common parameters. """
|
| 305 |
return Leaderboard(
|
| 306 |
value=sorted_dataframe,
|
| 307 |
datatype=[c.type for c in field_list],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 309 |
+
hide_columns=hidden_columns,
|
| 310 |
filter_columns=[
|
| 311 |
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 312 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
| 313 |
+
label="Select the number of parameters (B)"),
|
|
|
|
| 314 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
bool_checkboxgroup_label="Evaluation Mode",
|
| 316 |
interactive=False,
|
| 317 |
)
|
| 318 |
|
| 319 |
+
|
| 320 |
+
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 321 |
+
"""Leaderboard initialization. """
|
|
|
|
|
|
|
| 322 |
if dataframe is None or dataframe.empty:
|
| 323 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 324 |
|
| 325 |
+
# Sort and reset index
|
| 326 |
+
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
|
|
|
|
|
|
|
| 327 |
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
| 328 |
|
| 329 |
+
# Apply medal assignments
|
| 330 |
+
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
|
|
|
|
|
|
|
| 331 |
|
| 332 |
+
field_list = fields(AutoEvalColumn)
|
|
|
|
|
|
|
| 333 |
|
| 334 |
+
return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
|
|
|
|
| 335 |
|
| 336 |
+
|
| 337 |
+
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 338 |
+
""" Task-specific leaderboard update."""
|
| 339 |
+
if dataframe is None or dataframe.empty:
|
| 340 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 341 |
+
|
| 342 |
+
# Sort and reset index
|
| 343 |
+
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False).reset_index(drop=True)
|
| 344 |
+
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
| 345 |
+
|
| 346 |
+
# Apply medal assignments
|
| 347 |
+
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
field_list = fields(AutoEvalColumn)
|
| 350 |
|
| 351 |
return Leaderboard(
|
| 352 |
value=sorted_dataframe,
|
|
|
|
| 353 |
datatype=[c.type for c in field_list] + [int],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 355 |
+
hide_columns=hidden_columns,
|
| 356 |
filter_columns=[
|
| 357 |
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 358 |
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
|
|
|
| 362 |
interactive=False
|
| 363 |
)
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
+
def download_snapshot(repo, local_dir, max_retries=3):
|
| 367 |
+
"""Snapshot download with retry logic."""
|
| 368 |
+
for attempt in range(max_retries):
|
| 369 |
+
try:
|
| 370 |
+
logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
|
| 371 |
+
snapshot_download(
|
| 372 |
+
repo_id=repo,
|
| 373 |
+
local_dir=local_dir,
|
| 374 |
+
repo_type="dataset",
|
| 375 |
+
tqdm_class=None,
|
| 376 |
+
etag_timeout=30,
|
| 377 |
+
token=TOKEN
|
| 378 |
+
)
|
| 379 |
+
return True
|
| 380 |
+
except Exception as e:
|
| 381 |
+
logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
|
| 382 |
+
if attempt == max_retries - 1:
|
| 383 |
+
logger.error(f"Failed to download {repo} after {max_retries} attempts")
|
| 384 |
+
return False
|
| 385 |
+
return False
|
| 386 |
|
| 387 |
+
|
| 388 |
+
def restart_space():
|
| 389 |
+
"""Restart the Hugging Face space."""
|
| 390 |
try:
|
| 391 |
+
logger.info("Restarting space...")
|
| 392 |
+
API.restart_space(repo_id=REPO_ID)
|
| 393 |
except Exception as e:
|
| 394 |
+
logger.error(f"Error restarting space: {e}")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def create_title_html():
|
| 398 |
+
"""Function for title HTML."""
|
| 399 |
+
return """
|
| 400 |
+
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
|
| 401 |
+
<h1 style="
|
| 402 |
+
margin: 0 auto;
|
| 403 |
+
font-weight: 900;
|
| 404 |
+
font-size: 2.5em;
|
| 405 |
+
letter-spacing: 2px;
|
| 406 |
+
text-transform: uppercase;
|
| 407 |
+
background: linear-gradient(90deg, #1f77b4, #00c6ff);
|
| 408 |
+
-webkit-background-clip: text;
|
| 409 |
+
-webkit-text-fill-color: transparent;
|
| 410 |
+
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
|
| 411 |
+
">
|
| 412 |
+
EVALITA-LLM Leaderboard
|
| 413 |
+
</h1>
|
| 414 |
+
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
|
| 415 |
+
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
|
| 416 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
|
| 417 |
+
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
|
| 418 |
+
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
|
| 419 |
+
</svg>
|
| 420 |
+
Open Italian LLM Leaderboard
|
| 421 |
+
</a>
|
| 422 |
+
</div>
|
| 423 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
+
def create_credits_markdown():
|
| 427 |
+
"""Credits section."""
|
| 428 |
+
return """
|
| 429 |
+
**This project has benefited from the following support:**
|
| 430 |
|
| 431 |
+
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
|
|
|
|
| 432 |
|
| 433 |
+
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
|
| 435 |
+
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
|
| 436 |
+
"""
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
# Main initialization
|
| 440 |
+
def initialize_app():
|
| 441 |
+
"""Initialize the application."""
|
| 442 |
+
try:
|
| 443 |
+
# Download snapshots
|
| 444 |
+
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
| 445 |
+
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
| 446 |
+
|
| 447 |
+
if not (queue_success and results_success):
|
| 448 |
+
logger.error("Failed to download required data")
|
| 449 |
+
return None, None, None, None, None
|
| 450 |
+
|
| 451 |
+
# Load leaderboard data
|
| 452 |
+
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 453 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
|
| 454 |
+
EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 455 |
+
|
| 456 |
+
# Calculate theoretical max performance
|
| 457 |
+
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
|
| 458 |
+
|
| 459 |
+
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
|
| 460 |
+
|
| 461 |
+
except Exception as e:
|
| 462 |
+
logger.error(f"Error initializing app: {e}")
|
| 463 |
+
return None, None, None, None, None
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
# Initialize data
|
| 467 |
+
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
|
| 468 |
+
|
| 469 |
+
if LEADERBOARD_DF is None:
|
| 470 |
+
# Fallback behavior
|
| 471 |
+
logger.error("Failed to initialize app data")
|
| 472 |
+
theoretical_max_combined_perf = 0.0
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def create_gradio_interface():
|
| 476 |
+
"""The main Gradio interface."""
|
| 477 |
+
demo = gr.Blocks(css=custom_css)
|
| 478 |
+
|
| 479 |
+
with demo:
|
| 480 |
+
# Title
|
| 481 |
+
gr.HTML(create_title_html())
|
| 482 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 483 |
+
|
| 484 |
+
# Charts section
|
| 485 |
+
with gr.Row():
|
| 486 |
+
if LEADERBOARD_DF is not None:
|
| 487 |
+
# Note: You'd need to implement these chart functions properly
|
| 488 |
+
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
| 489 |
+
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
|
| 490 |
+
|
| 491 |
+
# Tabs
|
| 492 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 493 |
+
# Main leaderboard tab
|
| 494 |
+
with gr.TabItem("🏅 Benchmark"):
|
| 495 |
+
if LEADERBOARD_DF is not None:
|
| 496 |
+
leaderboard = init_leaderboard(
|
| 497 |
+
LEADERBOARD_DF,
|
| 498 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT",
|
| 499 |
+
"WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
| 500 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
| 501 |
+
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA",
|
| 502 |
+
"HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
gr.HTML(
|
| 506 |
+
f"""
|
| 507 |
<div style="
|
| 508 |
border: 2px solid #1f77b4;
|
| 509 |
border-radius: 10px;
|
|
|
|
| 513 |
font-size: 14px;
|
| 514 |
display: inline-block;
|
| 515 |
">
|
| 516 |
+
Theoretical performance of a model that scores the highest on every individual task:
|
| 517 |
+
<span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
|
| 518 |
</div>
|
| 519 |
"""
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
# About tab
|
| 523 |
+
with gr.TabItem("📝 About"):
|
| 524 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 525 |
+
|
| 526 |
+
with gr.TabItem("║", interactive=False):
|
| 527 |
+
gr.Markdown("", elem_classes="markdown-text")
|
| 528 |
+
|
| 529 |
+
# Task-specific tabs
|
| 530 |
+
if LEADERBOARD_DF is not None:
|
| 531 |
+
# Multiple choice tasks
|
| 532 |
+
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
| 533 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
| 534 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 535 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 536 |
+
|
| 537 |
+
leaderboard = update_task_leaderboard(
|
| 538 |
+
LEADERBOARD_DF.rename(columns={
|
| 539 |
+
f"{task} Prompt Average": "Prompt Average",
|
| 540 |
+
f"{task} Prompt Std": "Prompt Std",
|
| 541 |
+
f"{task} Best Prompt": "Best Prompt",
|
| 542 |
+
f"{task} Best Prompt Id": "Best Prompt Id",
|
| 543 |
+
task: "Combined Performance"
|
| 544 |
+
}),
|
| 545 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average',
|
| 546 |
+
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
| 547 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
| 548 |
+
col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance',
|
| 549 |
+
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
| 550 |
+
'Best Prompt Id']]
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
with gr.TabItem("│", interactive=False):
|
| 554 |
+
gr.Markdown("", elem_classes="markdown-text")
|
| 555 |
+
|
| 556 |
+
# Generative tasks
|
| 557 |
+
for task, metadata in TASK_METADATA_GENERATIVE.items():
|
| 558 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
| 559 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 560 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 561 |
+
|
| 562 |
+
leaderboard = update_task_leaderboard(
|
| 563 |
+
LEADERBOARD_DF.rename(columns={
|
| 564 |
+
f"{task} Prompt Average": "Prompt Average",
|
| 565 |
+
f"{task} Prompt Std": "Prompt Std",
|
| 566 |
+
f"{task} Best Prompt": "Best Prompt",
|
| 567 |
+
f"{task} Best Prompt Id": "Best Prompt Id",
|
| 568 |
+
task: "Combined Performance"
|
| 569 |
+
}),
|
| 570 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average',
|
| 571 |
+
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
| 572 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
| 573 |
+
col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance',
|
| 574 |
+
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
| 575 |
+
'Best Prompt Id']]
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
# Citation and Credits sections
|
| 579 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 580 |
+
gr.Textbox(
|
| 581 |
+
value=CITATION_BUTTON_TEXT,
|
| 582 |
+
label=CITATION_BUTTON_LABEL,
|
| 583 |
+
lines=20,
|
| 584 |
+
elem_id="citation-button",
|
| 585 |
+
show_copy_button=True
|
| 586 |
)
|
| 587 |
|
| 588 |
+
with gr.Accordion("📙 Credits", open=False):
|
| 589 |
+
gr.Markdown(create_credits_markdown())
|
| 590 |
+
|
| 591 |
+
return demo
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
# Create and configure the demo
|
| 595 |
+
demo = create_gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
+
# Background scheduler for space restart
|
| 598 |
scheduler = BackgroundScheduler()
|
| 599 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 600 |
scheduler.start()
|
| 601 |
|
| 602 |
+
# Launch configuration
|
| 603 |
+
if __name__ == "__main__":
|
| 604 |
+
demo.queue(default_concurrency_limit=40).launch(
|
| 605 |
+
debug=True,
|
| 606 |
+
show_error=True
|
| 607 |
+
)
|
app_18_09_2025.py
ADDED
|
@@ -0,0 +1,823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
| 7 |
+
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
|
| 8 |
+
from src.display.css_html_js import custom_css
|
| 9 |
+
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
|
| 10 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 11 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 12 |
+
from src.submission.submit import add_new_eval
|
| 13 |
+
import random
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import re
|
| 16 |
+
import plotly.express as px
|
| 17 |
+
import plotly.graph_objects as go
|
| 18 |
+
import numpy as np
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def mean_of_max_per_field(df):
|
| 22 |
+
"""
|
| 23 |
+
Calcola il massimo per ciascun campo e poi la media dei massimi.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
float: media dei valori massimi dei campi
|
| 30 |
+
"""
|
| 31 |
+
fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 32 |
+
|
| 33 |
+
#print(df.columns)
|
| 34 |
+
|
| 35 |
+
# Controlla che tutte le colonne esistano nel DataFrame
|
| 36 |
+
missing = [f for f in fields if f not in df.columns]
|
| 37 |
+
if missing:
|
| 38 |
+
raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")
|
| 39 |
+
|
| 40 |
+
# Calcola il massimo per ciascun campo
|
| 41 |
+
max_values = df[fields].max()
|
| 42 |
+
|
| 43 |
+
# Calcola la media dei massimi
|
| 44 |
+
mean_max = max_values.mean()
|
| 45 |
+
|
| 46 |
+
return mean_max
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def barplot_mean_few_minus_zero_shot(dataframe, tasks=None):
|
| 50 |
+
if tasks is None:
|
| 51 |
+
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 52 |
+
|
| 53 |
+
task_means = {}
|
| 54 |
+
|
| 55 |
+
for task in tasks:
|
| 56 |
+
if task not in dataframe.columns:
|
| 57 |
+
continue
|
| 58 |
+
|
| 59 |
+
# Separa few-shot e zero-shot
|
| 60 |
+
few_shot = dataframe[dataframe['IS_FS'] == True][["Model", task]]
|
| 61 |
+
zero_shot = dataframe[dataframe['IS_FS'] == False][["Model", task]]
|
| 62 |
+
|
| 63 |
+
# Allinea i modelli
|
| 64 |
+
merged = pd.merge(few_shot, zero_shot, on="Model", suffixes=("_few", "_zero"))
|
| 65 |
+
|
| 66 |
+
# Rimuovi righe con valori mancanti
|
| 67 |
+
merged = merged.dropna(subset=[f"{task}_few", f"{task}_zero"])
|
| 68 |
+
|
| 69 |
+
if merged.empty:
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
# Calcola differenza few - zero
|
| 73 |
+
diff = merged[f"{task}_few"] - merged[f"{task}_zero"]
|
| 74 |
+
|
| 75 |
+
# Calcola la media
|
| 76 |
+
task_means[task] = diff.mean()
|
| 77 |
+
|
| 78 |
+
# Crea barplot
|
| 79 |
+
fig = go.Figure([go.Bar(
|
| 80 |
+
x=list(task_means.keys()),
|
| 81 |
+
y=list(task_means.values()),
|
| 82 |
+
marker_color="#ff7f0e",
|
| 83 |
+
text=[f"{v:.2f}" for v in task_means.values()],
|
| 84 |
+
textposition="outside",
|
| 85 |
+
hovertemplate="<b>%{x}</b><br>Mean Delta Accuracy: %{y:.2f}%<extra></extra>"
|
| 86 |
+
)])
|
| 87 |
+
|
| 88 |
+
# Linea di riferimento a 0
|
| 89 |
+
'''
|
| 90 |
+
fig.add_shape(
|
| 91 |
+
type="line",
|
| 92 |
+
x0=-0.5, x1=len(task_means) - 0.5,
|
| 93 |
+
y0=0, y1=0,
|
| 94 |
+
line=dict(color="black", width=2, dash="dash"),
|
| 95 |
+
xref="x", yref="y"
|
| 96 |
+
)
|
| 97 |
+
'''
|
| 98 |
+
|
| 99 |
+
fig.update_layout(
|
| 100 |
+
title="Mean Accuracy Difference (Few-shot − Zero-shot) per Task",
|
| 101 |
+
xaxis_title="",
|
| 102 |
+
yaxis_title="Mean Delta Combined Performance",
|
| 103 |
+
template="plotly_white",
|
| 104 |
+
font=dict(family="Arial", size=13),
|
| 105 |
+
#margin=dict(b=100)
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
fig.add_annotation(
|
| 109 |
+
text="5-shot learning generally outperforms zero-shot, especially in tasks like NER and REL.<br>"
|
| 110 |
+
"Only in Summarization (SU) does it provide no accuracy gain.",
|
| 111 |
+
xref="paper", yref="paper",
|
| 112 |
+
x=0, y=-0.2,
|
| 113 |
+
showarrow=False,
|
| 114 |
+
font=dict(size=11, color="gray"),
|
| 115 |
+
align="left"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return fig
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def boxplot_per_task(dataframe=None, baselines=None, references=None):
|
| 122 |
+
|
| 123 |
+
#print(dataframe.columns)
|
| 124 |
+
|
| 125 |
+
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 126 |
+
|
| 127 |
+
if dataframe is None:
|
| 128 |
+
np.random.seed(42)
|
| 129 |
+
dataframe = pd.DataFrame({
|
| 130 |
+
task: np.random.uniform(0.4, 0.9, 20) * 100
|
| 131 |
+
for task in tasks
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
if baselines is None:
|
| 135 |
+
baselines = {task: np.random.randint(50, 70) for task in tasks}
|
| 136 |
+
|
| 137 |
+
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
| 138 |
+
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
|
| 139 |
+
|
| 140 |
+
fig = go.Figure()
|
| 141 |
+
|
| 142 |
+
for i, task in enumerate(tasks):
|
| 143 |
+
if task in dataframe.columns:
|
| 144 |
+
y_data = dataframe[task].dropna().tolist()
|
| 145 |
+
|
| 146 |
+
# boxplot
|
| 147 |
+
fig.add_trace(go.Box(
|
| 148 |
+
y=y_data,
|
| 149 |
+
name=task,
|
| 150 |
+
marker=dict(color=colors[i]),
|
| 151 |
+
line=dict(color="black", width=2),
|
| 152 |
+
fillcolor=colors[i],
|
| 153 |
+
opacity=0.7,
|
| 154 |
+
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 155 |
+
width=0.6,
|
| 156 |
+
whiskerwidth=0.2,
|
| 157 |
+
quartilemethod="linear"
|
| 158 |
+
))
|
| 159 |
+
|
| 160 |
+
# baseline
|
| 161 |
+
if task in baselines and baselines[task] is not None:
|
| 162 |
+
fig.add_shape(
|
| 163 |
+
type="line",
|
| 164 |
+
x0=i - 0.3, x1=i + 0.3,
|
| 165 |
+
y0=baselines[task], y1=baselines[task],
|
| 166 |
+
line=dict(color="black", width=2, dash="dot"), # più visibile
|
| 167 |
+
xref="x", yref="y"
|
| 168 |
+
)
|
| 169 |
+
'''
|
| 170 |
+
fig.add_annotation(
|
| 171 |
+
x=i, y=baselines[task],
|
| 172 |
+
text=f"{baselines[task]}%",
|
| 173 |
+
showarrow=False,
|
| 174 |
+
yshift=10,
|
| 175 |
+
font=dict(size=10, color="black")
|
| 176 |
+
)
|
| 177 |
+
'''
|
| 178 |
+
|
| 179 |
+
# reference GPT-4o
|
| 180 |
+
if task in references and references[task] is not None:
|
| 181 |
+
fig.add_shape(
|
| 182 |
+
type="line",
|
| 183 |
+
x0=i - 0.3, x1=i + 0.3,
|
| 184 |
+
y0=references[task], y1=references[task],
|
| 185 |
+
line=dict(color="red", width=2, dash="dashdot"),
|
| 186 |
+
xref="x", yref="y"
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
fig.update_layout(
|
| 190 |
+
title="Distribution of Model Accuracy by Task",
|
| 191 |
+
xaxis_title="Task",
|
| 192 |
+
yaxis_title="Combined Performance",
|
| 193 |
+
template="plotly_white",
|
| 194 |
+
boxmode="group",
|
| 195 |
+
dragmode=False,
|
| 196 |
+
font=dict(family="Arial", size=10),
|
| 197 |
+
margin=dict(b=80),
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
fig.add_annotation(
|
| 201 |
+
text=(
|
| 202 |
+
"In tasks like TE and SA, models approach the accuracy of supervised <br>"
|
| 203 |
+
"models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
|
| 204 |
+
"Dashed red lines show GPT-4o reference results for generative tasks."
|
| 205 |
+
),
|
| 206 |
+
xref="paper", yref="paper",
|
| 207 |
+
x=0.5, y=-0.30,
|
| 208 |
+
showarrow=False,
|
| 209 |
+
font=dict(size=11, color="gray"),
|
| 210 |
+
align="left"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
fig.update_yaxes(range=[0, 100], fixedrange=True)
|
| 214 |
+
|
| 215 |
+
return fig
|
| 216 |
+
|
| 217 |
+
# EVALITA results
|
| 218 |
+
BASELINES = {
|
| 219 |
+
"TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
|
| 220 |
+
"LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
# GPT-4o
|
| 224 |
+
REFERENCES = {
|
| 225 |
+
"NER": 79.11,
|
| 226 |
+
"REL": 63.32,
|
| 227 |
+
"LS": 59.25,
|
| 228 |
+
"SU": 33.04
|
| 229 |
+
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def boxplot_prompts_per_task(dataframe, tasks=None):
|
| 234 |
+
if tasks is None:
|
| 235 |
+
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 236 |
+
|
| 237 |
+
# Lista delle colonne da aggiornare
|
| 238 |
+
cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 239 |
+
# Applichiamo la trasformazione
|
| 240 |
+
for col in cols_to_update:
|
| 241 |
+
dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
|
| 242 |
+
|
| 243 |
+
fig = go.Figure()
|
| 244 |
+
|
| 245 |
+
# Liste per creare una sola voce in legenda per Average e Best
|
| 246 |
+
avg_x, avg_y = [], []
|
| 247 |
+
best_x, best_y, best_text = [], [], []
|
| 248 |
+
|
| 249 |
+
for task in tasks:
|
| 250 |
+
avg_col = f"{task} Prompt Average"
|
| 251 |
+
best_col = f"{task} Best Prompt"
|
| 252 |
+
best_id_col = f"{task} Best Prompt Id"
|
| 253 |
+
|
| 254 |
+
if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
|
| 255 |
+
avg_value = dataframe[avg_col].mean()
|
| 256 |
+
avg_x.append(task)
|
| 257 |
+
avg_y.append(avg_value)
|
| 258 |
+
|
| 259 |
+
best_value = dataframe[best_col].mean()
|
| 260 |
+
best_x.append(task)
|
| 261 |
+
best_y.append(best_value)
|
| 262 |
+
best_id = dataframe[best_id_col].mode()[0] # Most frequent best prompt id
|
| 263 |
+
best_text.append(f"P:{best_id}")
|
| 264 |
+
|
| 265 |
+
# Barre Average Accuracy (azzurro)
|
| 266 |
+
fig.add_trace(go.Bar(
|
| 267 |
+
x=avg_x,
|
| 268 |
+
y=avg_y,
|
| 269 |
+
name="Avg. Accuracy",
|
| 270 |
+
marker_color="#1f77b4",
|
| 271 |
+
#hovertemplate="%{y:.2f}%<extra></extra>"
|
| 272 |
+
#hovertemplate="<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 273 |
+
))
|
| 274 |
+
|
| 275 |
+
# Barre Best Prompt (rosso)
|
| 276 |
+
fig.add_trace(go.Bar(
|
| 277 |
+
x=best_x,
|
| 278 |
+
y=best_y,
|
| 279 |
+
name="Best Prompt",
|
| 280 |
+
marker_color="#d62728",
|
| 281 |
+
#hovertemplate="%{y:.2f}%<extra></extra>"
|
| 282 |
+
#hovertemplate = "<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
| 283 |
+
))
|
| 284 |
+
|
| 285 |
+
# Testo sopra barre Best Prompt con ID
|
| 286 |
+
for x, y, text in zip(best_x, best_y, best_text):
|
| 287 |
+
fig.add_annotation(
|
| 288 |
+
x=x,
|
| 289 |
+
y=y + 3, # leggermente sopra la barra
|
| 290 |
+
text=text,
|
| 291 |
+
showarrow=False,
|
| 292 |
+
font=dict(size=12, color="black")
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
fig.update_layout(
|
| 296 |
+
title= "Prompt Accuracy: Avg vs Best",
|
| 297 |
+
xaxis_title="Task",
|
| 298 |
+
yaxis_title="Combined Performance",
|
| 299 |
+
barmode='group',
|
| 300 |
+
template="plotly_white",
|
| 301 |
+
font=dict(family="Arial", size=10),
|
| 302 |
+
yaxis=dict(range=[0, 100], fixedrange=True)
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# caption come annotazione separata
|
| 306 |
+
fig.add_annotation(
|
| 307 |
+
text="There is no single prompt that performs best across all tasks.<br>"
|
| 308 |
+
"Different prompts achieve the highest accuracy on different tasks.",
|
| 309 |
+
xref="paper", yref="paper",
|
| 310 |
+
x=0.5, y=-0.3,
|
| 311 |
+
showarrow=False,
|
| 312 |
+
font=dict(size=11, color="gray"),
|
| 313 |
+
align="center",
|
| 314 |
+
xanchor="center"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
return fig
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def line_chart(dataframe):
|
| 321 |
+
|
| 322 |
+
# Normalizza le dimensioni per avere marker non troppo piccoli né enormi
|
| 323 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
| 324 |
+
vmin, vmax = min(values), max(values)
|
| 325 |
+
return [
|
| 326 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
|
| 327 |
+
for val in values
|
| 328 |
+
]
|
| 329 |
+
|
| 330 |
+
# dati in base a IS_FS
|
| 331 |
+
df_true = dataframe[dataframe['IS_FS'] == True]
|
| 332 |
+
df_false = dataframe[dataframe['IS_FS'] == False]
|
| 333 |
+
|
| 334 |
+
# Estrai valori x, y e labels
|
| 335 |
+
x_true = df_true['#Params (B)'].tolist()
|
| 336 |
+
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
|
| 337 |
+
labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
|
| 338 |
+
|
| 339 |
+
x_false = df_false['#Params (B)'].tolist()
|
| 340 |
+
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
|
| 341 |
+
labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
|
| 342 |
+
|
| 343 |
+
fig = go.Figure()
|
| 344 |
+
|
| 345 |
+
# Punti IS_FS=True
|
| 346 |
+
fig.add_trace(go.Scatter(
|
| 347 |
+
x=x_true,
|
| 348 |
+
y=y_true,
|
| 349 |
+
mode='markers',
|
| 350 |
+
name='5-Shot',
|
| 351 |
+
marker=dict(
|
| 352 |
+
color='blue',
|
| 353 |
+
size=scale_sizes(x_true)
|
| 354 |
+
),
|
| 355 |
+
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 356 |
+
customdata=labels_true
|
| 357 |
+
))
|
| 358 |
+
|
| 359 |
+
# Punti IS_FS=False
|
| 360 |
+
fig.add_trace(go.Scatter(
|
| 361 |
+
x=x_false,
|
| 362 |
+
y=y_false,
|
| 363 |
+
mode='markers',
|
| 364 |
+
name='0-Shot',
|
| 365 |
+
marker=dict(
|
| 366 |
+
color='red',
|
| 367 |
+
size=scale_sizes(x_false)
|
| 368 |
+
),
|
| 369 |
+
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 370 |
+
customdata=labels_false
|
| 371 |
+
))
|
| 372 |
+
|
| 373 |
+
# Trova il massimo tra tutti i modelli
|
| 374 |
+
all_y = y_true + y_false
|
| 375 |
+
all_x = x_true + x_false
|
| 376 |
+
all_labels = labels_true + labels_false
|
| 377 |
+
max_idx = all_y.index(max(all_y))
|
| 378 |
+
max_x = all_x[max_idx]
|
| 379 |
+
max_y = all_y[max_idx]
|
| 380 |
+
max_label = all_labels[max_idx]
|
| 381 |
+
|
| 382 |
+
# Aggiungi annotazione visibile per il modello migliore
|
| 383 |
+
fig.add_annotation(
|
| 384 |
+
x=max_x,
|
| 385 |
+
y=max_y,
|
| 386 |
+
#text=f"Top: {max_label} ({max_y:.1f}%)",
|
| 387 |
+
text=f"{max_label}",
|
| 388 |
+
showarrow=True,
|
| 389 |
+
arrowhead=2,
|
| 390 |
+
arrowsize=1,
|
| 391 |
+
arrowwidth=2,
|
| 392 |
+
arrowcolor="black",
|
| 393 |
+
font=dict(size=11, color="black"),
|
| 394 |
+
xshift=10,
|
| 395 |
+
yshift=10,
|
| 396 |
+
ax = -30, ay = -20, # sposta la label a sinistra e sopra il punto
|
| 397 |
+
xanchor = "right" # allinea la label a destra rispetto al punto
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
fig.update_layout(
|
| 401 |
+
title="Avg. Combined Performance vs #Params",
|
| 402 |
+
xaxis_title="#Params (B)",
|
| 403 |
+
yaxis_title="Avg. Combined Performance",
|
| 404 |
+
template="plotly_white",
|
| 405 |
+
hovermode="closest",
|
| 406 |
+
font=dict(family="Arial", size=10),
|
| 407 |
+
dragmode=False,
|
| 408 |
+
xaxis=dict(
|
| 409 |
+
tickvals=[0, 25, 50, 75, 100, 125],
|
| 410 |
+
ticktext=["0", "25", "50", "75", "100"]
|
| 411 |
+
),
|
| 412 |
+
yaxis=dict(
|
| 413 |
+
tickvals=[0, 20, 40, 60, 80, 100], # 👈 tick fissi
|
| 414 |
+
range=[0, 100] # 👈 range bloccato
|
| 415 |
+
)
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Caption
|
| 419 |
+
fig.add_annotation(
|
| 420 |
+
text="Accuracy generally rises with #Params, but smaller models <br>"
|
| 421 |
+
"with 5-shot can outperform larger zero-shot models.",
|
| 422 |
+
xref="paper", yref="paper",
|
| 423 |
+
x=0.5, y=-0.3, # 👈 centrata
|
| 424 |
+
showarrow=False,
|
| 425 |
+
font=dict(size=11, color="gray"),
|
| 426 |
+
align="center",
|
| 427 |
+
xanchor="center" # 👈 ancora centrata rispetto al testo
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
| 431 |
+
fig.update_yaxes(fixedrange=True)
|
| 432 |
+
|
| 433 |
+
return fig
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
# Define task metadata (icons, names, descriptions)
|
| 437 |
+
TASK_METADATA_MULTIPLECHOICE = {
|
| 438 |
+
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
| 439 |
+
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
|
| 440 |
+
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
|
| 441 |
+
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
|
| 442 |
+
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
|
| 443 |
+
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
|
| 444 |
+
}
|
| 445 |
+
|
| 446 |
+
# Define task metadata (icons, names, descriptions)
|
| 447 |
+
TASK_METADATA_GENERATIVE = {
|
| 448 |
+
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
|
| 449 |
+
"SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
|
| 450 |
+
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
|
| 451 |
+
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
|
| 452 |
+
}
|
| 453 |
+
|
| 454 |
+
def restart_space():
|
| 455 |
+
"""Restart the Hugging Face space."""
|
| 456 |
+
API.restart_space(repo_id=REPO_ID)
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 460 |
+
"""
|
| 461 |
+
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
|
| 462 |
+
The table is sorted based on the "Avg. Combined Performance" field.
|
| 463 |
+
"""
|
| 464 |
+
if dataframe is None or dataframe.empty:
|
| 465 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 466 |
+
|
| 467 |
+
#print("????????????????????????????????", mean_of_max_per_field(dataframe))
|
| 468 |
+
|
| 469 |
+
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
|
| 470 |
+
|
| 471 |
+
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
| 472 |
+
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
| 473 |
+
|
| 474 |
+
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
|
| 475 |
+
large_medal_fs_assigned = False
|
| 476 |
+
medium_medal_fs_assigned = False
|
| 477 |
+
small_medal_fs_assigned = False
|
| 478 |
+
|
| 479 |
+
large_medal_0shot_assigned = False
|
| 480 |
+
medium_medal_0shot_assigned = False
|
| 481 |
+
small_medal_0shot_assigned = False
|
| 482 |
+
|
| 483 |
+
# Lista temporanea per salvare i nuovi valori della colonna Model
|
| 484 |
+
new_model_column = []
|
| 485 |
+
|
| 486 |
+
for _, row in sorted_dataframe.iterrows():
|
| 487 |
+
if row['IS_FS']: # 5-Few-Shot
|
| 488 |
+
if row["Size"] == "🔵🔵🔵" and not large_medal_fs_assigned:
|
| 489 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🔵🏆")
|
| 490 |
+
large_medal_fs_assigned = True
|
| 491 |
+
elif row["Size"] == "🔵🔵" and not medium_medal_fs_assigned:
|
| 492 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🏆")
|
| 493 |
+
medium_medal_fs_assigned = True
|
| 494 |
+
elif row["Size"] == "🔵" and not small_medal_fs_assigned:
|
| 495 |
+
new_model_column.append(f"{row['Model']} 🔵🏆")
|
| 496 |
+
small_medal_fs_assigned = True
|
| 497 |
+
else:
|
| 498 |
+
new_model_column.append(row["Model"])
|
| 499 |
+
else: # 0-Shot
|
| 500 |
+
if row["Size"] == "🔵🔵🔵" and not large_medal_0shot_assigned:
|
| 501 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🔵🎖️")
|
| 502 |
+
large_medal_0shot_assigned = True
|
| 503 |
+
elif row["Size"] == "🔵🔵" and not medium_medal_0shot_assigned:
|
| 504 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🎖️")
|
| 505 |
+
medium_medal_0shot_assigned = True
|
| 506 |
+
elif row["Size"] == "🔵" and not small_medal_0shot_assigned:
|
| 507 |
+
new_model_column.append(f"{row['Model']} 🔵🎖️")
|
| 508 |
+
small_medal_0shot_assigned = True
|
| 509 |
+
else:
|
| 510 |
+
new_model_column.append(row["Model"])
|
| 511 |
+
|
| 512 |
+
# Lista delle colonne da aggiornare
|
| 513 |
+
#cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
|
| 514 |
+
# Applichiamo la trasformazione
|
| 515 |
+
#for col in cols_to_update:
|
| 516 |
+
# dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
|
| 517 |
+
|
| 518 |
+
# Aggiorna la colonna Model
|
| 519 |
+
sorted_dataframe["Model"] = new_model_column
|
| 520 |
+
|
| 521 |
+
field_list = fields(AutoEvalColumn)
|
| 522 |
+
|
| 523 |
+
return Leaderboard(
|
| 524 |
+
value=sorted_dataframe,
|
| 525 |
+
datatype=[c.type for c in field_list],
|
| 526 |
+
#select_columns=SelectColumns(
|
| 527 |
+
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
|
| 528 |
+
# cant_deselect=[c.name for c in field_list if c.never_hidden],
|
| 529 |
+
# label="Select Columns to Display:",
|
| 530 |
+
#),
|
| 531 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 532 |
+
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 533 |
+
filter_columns=[
|
| 534 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 535 |
+
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
| 536 |
+
# default=[["0️⃣", "0️⃣"]]),
|
| 537 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
|
| 538 |
+
],
|
| 539 |
+
#filter_columns=[
|
| 540 |
+
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
| 541 |
+
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
|
| 542 |
+
#],
|
| 543 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
| 544 |
+
interactive=False,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 548 |
+
"""
|
| 549 |
+
Update and return the leaderboard when a specific task is selected.
|
| 550 |
+
The table is sorted based on the "Combined Performance" field.
|
| 551 |
+
"""
|
| 552 |
+
if dataframe is None or dataframe.empty:
|
| 553 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 554 |
+
|
| 555 |
+
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
|
| 556 |
+
|
| 557 |
+
# aggiungo la colonna rank in base alla posizione
|
| 558 |
+
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
| 559 |
+
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
| 560 |
+
|
| 561 |
+
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
|
| 562 |
+
large_medal_fs_assigned = False
|
| 563 |
+
medium_medal_fs_assigned = False
|
| 564 |
+
small_medal_fs_assigned = False
|
| 565 |
+
|
| 566 |
+
large_medal_0shot_assigned = False
|
| 567 |
+
medium_medal_0shot_assigned = False
|
| 568 |
+
small_medal_0shot_assigned = False
|
| 569 |
+
|
| 570 |
+
# Lista temporanea per salvare i nuovi valori della colonna Model
|
| 571 |
+
new_model_column = []
|
| 572 |
+
|
| 573 |
+
for _, row in sorted_dataframe.iterrows():
|
| 574 |
+
if row['IS_FS']: # 5-Few-Shot
|
| 575 |
+
if row["Size"] == "🔵🔵🔵" and not large_medal_fs_assigned:
|
| 576 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🔵🏆")
|
| 577 |
+
large_medal_fs_assigned = True
|
| 578 |
+
elif row["Size"] == "🔵🔵" and not medium_medal_fs_assigned:
|
| 579 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🏆")
|
| 580 |
+
medium_medal_fs_assigned = True
|
| 581 |
+
elif row["Size"] == "🔵" and not small_medal_fs_assigned:
|
| 582 |
+
new_model_column.append(f"{row['Model']} 🔵🏆")
|
| 583 |
+
small_medal_fs_assigned = True
|
| 584 |
+
else:
|
| 585 |
+
new_model_column.append(row["Model"])
|
| 586 |
+
else: # 0-Shot
|
| 587 |
+
if row["Size"] == "🔵🔵🔵" and not large_medal_0shot_assigned:
|
| 588 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🔵🎖️")
|
| 589 |
+
large_medal_0shot_assigned = True
|
| 590 |
+
elif row["Size"] == "🔵🔵" and not medium_medal_0shot_assigned:
|
| 591 |
+
new_model_column.append(f"{row['Model']} 🔵🔵🎖️")
|
| 592 |
+
medium_medal_0shot_assigned = True
|
| 593 |
+
elif row["Size"] == "🔵" and not small_medal_0shot_assigned:
|
| 594 |
+
new_model_column.append(f"{row['Model']} 🔵🎖️")
|
| 595 |
+
small_medal_0shot_assigned = True
|
| 596 |
+
else:
|
| 597 |
+
new_model_column.append(row["Model"])
|
| 598 |
+
|
| 599 |
+
# Aggiorna la colonna Model
|
| 600 |
+
sorted_dataframe["Model"] = new_model_column
|
| 601 |
+
|
| 602 |
+
pd.set_option('display.max_colwidth', None)
|
| 603 |
+
#print("========================", dataframe['Model'])
|
| 604 |
+
|
| 605 |
+
#print(sorted_dataframe['Combined Performance'])
|
| 606 |
+
|
| 607 |
+
field_list = fields(AutoEvalColumn)
|
| 608 |
+
|
| 609 |
+
return Leaderboard(
|
| 610 |
+
value=sorted_dataframe,
|
| 611 |
+
#datatype=[c.type for c in field_list],
|
| 612 |
+
datatype=[c.type for c in field_list] + [int],
|
| 613 |
+
#select_columns=SelectColumns(
|
| 614 |
+
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
|
| 615 |
+
# cant_deselect=[c.name for c in field_list if c.never_hidden],
|
| 616 |
+
# label="Select Columns to Display:",
|
| 617 |
+
#),
|
| 618 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 619 |
+
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 620 |
+
filter_columns=[
|
| 621 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 622 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
| 623 |
+
label="Select the number of parameters (B)"),
|
| 624 |
+
],
|
| 625 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
| 626 |
+
interactive=False
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
'''
|
| 630 |
+
# Helper function for leaderboard initialization
|
| 631 |
+
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 632 |
+
"""Initialize and return a leaderboard."""
|
| 633 |
+
if dataframe is None or dataframe.empty:
|
| 634 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 635 |
+
|
| 636 |
+
return Leaderboard(
|
| 637 |
+
value=dataframe,
|
| 638 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 639 |
+
select_columns=SelectColumns(
|
| 640 |
+
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
| 641 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 642 |
+
label="Select Columns to Display:",
|
| 643 |
+
),
|
| 644 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 645 |
+
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 646 |
+
filter_columns=[
|
| 647 |
+
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
|
| 648 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
| 649 |
+
],
|
| 650 |
+
bool_checkboxgroup_label="Hide models",
|
| 651 |
+
interactive=False,
|
| 652 |
+
)
|
| 653 |
+
'''
|
| 654 |
+
|
| 655 |
+
def download_snapshot(repo, local_dir):
|
| 656 |
+
"""Try to download a snapshot from Hugging Face Hub."""
|
| 657 |
+
try:
|
| 658 |
+
print(f"Downloading from {repo} to {local_dir}...")
|
| 659 |
+
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
|
| 660 |
+
except Exception as e:
|
| 661 |
+
print(f"Error downloading {repo}: {e}")
|
| 662 |
+
restart_space()
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
# Initialize the app by downloading snapshots
|
| 666 |
+
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
| 667 |
+
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
| 668 |
+
|
| 669 |
+
# Load leaderboard data
|
| 670 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 671 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 672 |
+
#print(LEADERBOARD_DF.columns.tolist())
|
| 673 |
+
|
| 674 |
+
theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)
|
| 675 |
+
|
| 676 |
+
# Prepare the main interface
|
| 677 |
+
demo = gr.Blocks(css=custom_css)
|
| 678 |
+
with demo:
|
| 679 |
+
#gr.HTML(TITLE)
|
| 680 |
+
gr.HTML(
|
| 681 |
+
"""
|
| 682 |
+
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
|
| 683 |
+
<h1 style="
|
| 684 |
+
margin: 0 auto;
|
| 685 |
+
font-weight: 900;
|
| 686 |
+
font-size: 2.5em;
|
| 687 |
+
letter-spacing: 2px;
|
| 688 |
+
text-transform: uppercase;
|
| 689 |
+
background: linear-gradient(90deg, #1f77b4, #00c6ff);
|
| 690 |
+
-webkit-background-clip: text;
|
| 691 |
+
-webkit-text-fill-color: transparent;
|
| 692 |
+
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
|
| 693 |
+
">
|
| 694 |
+
EVALITA-LLM Leaderboard
|
| 695 |
+
</h1>
|
| 696 |
+
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
|
| 697 |
+
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
|
| 698 |
+
<!-- Icona stilizzata -->
|
| 699 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
|
| 700 |
+
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
|
| 701 |
+
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
|
| 702 |
+
</svg>
|
| 703 |
+
Open Italian LLM Leaderboard
|
| 704 |
+
</a>
|
| 705 |
+
</div>
|
| 706 |
+
"""
|
| 707 |
+
)
|
| 708 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 709 |
+
|
| 710 |
+
# ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
|
| 711 |
+
with gr.Row():
|
| 712 |
+
gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
| 713 |
+
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
|
| 714 |
+
#gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF), elem_id="boxplot-prompt-task")
|
| 715 |
+
|
| 716 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 717 |
+
|
| 718 |
+
# Main leaderboard tab
|
| 719 |
+
with gr.TabItem("🏅 Benchmark"):
|
| 720 |
+
|
| 721 |
+
leaderboard = init_leaderboard(
|
| 722 |
+
LEADERBOARD_DF,
|
| 723 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
| 724 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
gr.HTML(
|
| 728 |
+
f"""
|
| 729 |
+
<div style="
|
| 730 |
+
border: 2px solid #1f77b4;
|
| 731 |
+
border-radius: 10px;
|
| 732 |
+
padding: 10px;
|
| 733 |
+
background-color: #f0f8ff;
|
| 734 |
+
font-weight: bold;
|
| 735 |
+
font-size: 14px;
|
| 736 |
+
display: inline-block;
|
| 737 |
+
">
|
| 738 |
+
Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
|
| 739 |
+
</div>
|
| 740 |
+
"""
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
'''
|
| 744 |
+
with gr.TabItem("📈 Charts"):
|
| 745 |
+
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
| 746 |
+
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
| 747 |
+
gr.Plot(value=line_chart(LEADERBOARD_DF))
|
| 748 |
+
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))
|
| 749 |
+
gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF))
|
| 750 |
+
gr.Plot(value=barplot_mean_few_minus_zero_shot(LEADERBOARD_DF))
|
| 751 |
+
'''
|
| 752 |
+
|
| 753 |
+
# About tab
|
| 754 |
+
with gr.TabItem("📝 About"):
|
| 755 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 756 |
+
|
| 757 |
+
# About tab
|
| 758 |
+
with gr.TabItem("║", interactive=False):
|
| 759 |
+
gr.Markdown("", elem_classes="markdown-text")
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
# Task-specific leaderboards
|
| 763 |
+
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
| 764 |
+
|
| 765 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
| 766 |
+
|
| 767 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 768 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 769 |
+
|
| 770 |
+
leaderboard = update_task_leaderboard(
|
| 771 |
+
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
| 772 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
| 773 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
# About tab
|
| 777 |
+
with gr.TabItem("│", interactive=False):
|
| 778 |
+
gr.Markdown("", elem_classes="markdown-text")
|
| 779 |
+
|
| 780 |
+
# Task-specific leaderboards
|
| 781 |
+
for task, metadata in TASK_METADATA_GENERATIVE.items():
|
| 782 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
| 783 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 784 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 785 |
+
|
| 786 |
+
leaderboard = update_task_leaderboard(
|
| 787 |
+
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
|
| 788 |
+
f"{task} Prompt Std": "Prompt Std",
|
| 789 |
+
f"{task} Best Prompt": "Best Prompt",
|
| 790 |
+
f"{task} Best Prompt Id": "Best Prompt Id",
|
| 791 |
+
task: "Combined Performance"}),
|
| 792 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
|
| 793 |
+
'Best Prompt Id'],
|
| 794 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
| 795 |
+
col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
|
| 796 |
+
'Best Prompt', 'Best Prompt Id']]
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
# Citation section
|
| 800 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 801 |
+
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
|
| 802 |
+
|
| 803 |
+
with gr.Accordion("📙 Credits", open=False):
|
| 804 |
+
gr.Markdown(
|
| 805 |
+
"""
|
| 806 |
+
**This project has benefited from the following support:**
|
| 807 |
+
|
| 808 |
+
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
|
| 809 |
+
|
| 810 |
+
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
|
| 811 |
+
|
| 812 |
+
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
|
| 813 |
+
"""
|
| 814 |
+
)
|
| 815 |
+
|
| 816 |
+
# Background job to restart space
|
| 817 |
+
scheduler = BackgroundScheduler()
|
| 818 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 819 |
+
scheduler.start()
|
| 820 |
+
|
| 821 |
+
# Launch the app with concurrent queueing
|
| 822 |
+
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
|
| 823 |
+
show_error=True)
|