|
import glob |
|
import json |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
from typing import Dict, Union |
|
|
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, FewShotType |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run. |
|
""" |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: Dict[str, Union[float, int]] |
|
average_CPS: float |
|
is_5fewshot: bool |
|
fewshot_symbol: FewShotType = FewShotType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
|
|
|
|
|
|
average_CPS = float(data.get('average_CPS', 0.0)) |
|
|
|
fewshot = config.get("num_fewshot", False) |
|
|
|
try: |
|
if fewshot == "5": |
|
is_5fewshot = True |
|
else: |
|
is_5fewshot = False |
|
except ValueError: |
|
is_5fewshot = False |
|
|
|
fewshot_symbol = FewShotType.from_num_fewshot(is_5fewshot) |
|
|
|
|
|
num_params = int(0) |
|
num_params_billion = config.get("num_params_billion") |
|
if num_params_billion is not None: |
|
num_params = math.ceil(num_params_billion) |
|
|
|
|
|
org_and_model = config.get("model_name", config.get("model_args", None)) |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
|
|
result_key = f"{model}_{is_5fewshot}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
|
|
result_key = f"{org}_{model}_{is_5fewshot}" |
|
full_model = "/".join(org_and_model) |
|
|
|
still_on_hub, _, model_config = is_model_on_hub( |
|
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False |
|
) |
|
architecture = "?" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
task = task.value |
|
|
|
for k, v in data["tasks"].items(): |
|
if task.benchmark[:-2] == k: |
|
if "Best Prompt Id" in task.col_name: |
|
results[task.benchmark] = int(v[task.metric_type][-1:]) |
|
else: |
|
|
|
results[task.benchmark] = float(v[task.metric_type]) |
|
|
|
|
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
average_CPS=average_CPS, |
|
fewshot_symbol=fewshot_symbol, |
|
is_5fewshot=is_5fewshot, |
|
revision= config.get("model_sha", ""), |
|
still_on_hub=still_on_hub, |
|
architecture=architecture, |
|
num_params=num_params |
|
) |
|
|
|
''' |
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
self.model_type = ModelType.from_str(request.get("model_type", "")) |
|
self.weight_type = WeightType[request.get("weight_type", "Original")] |
|
self.license = request.get("license", "?") |
|
self.likes = request.get("likes", 0) |
|
self.num_params = request.get("params", 0) |
|
self.date = request.get("submitted_time", "") |
|
except Exception: |
|
print(f"Could not find request file for {self.org}/{self.model} with precision |
|
''' |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
average = self.average_CPS |
|
|
|
fewshot_symbol = ( |
|
self.fewshot_symbol.value.symbol if isinstance(self.fewshot_symbol, FewShotType) else "❓" |
|
) |
|
|
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
|
|
|
|
|
|
|
|
|
|
AutoEvalColumn.fewshot_symbol.name: fewshot_symbol, |
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.revision.name: self.revision, |
|
AutoEvalColumn.average.name: average, |
|
AutoEvalColumn.is_5fewshot.name: self.is_5fewshot, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
} |
|
|
|
for task in Tasks: |
|
data_dict[task.value.col_name] = self.results[task.value.benchmark] |
|
|
|
return data_dict |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError: |
|
files = [files[-1]] |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
|
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
return results |
|
|