Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +58 -0
- example-image.jpg +0 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import supervision as sv
|
6 |
+
import time
|
7 |
+
|
8 |
+
model = YOLO("yolov8x.pt")
|
9 |
+
|
10 |
+
def callback(x: np.ndarray) -> sv.Detections:
|
11 |
+
result = model(x, verbose=False, conf=0.25)[0]
|
12 |
+
return sv.Detections.from_ultralytics(result)
|
13 |
+
|
14 |
+
def main():
|
15 |
+
st.title("Small Object Detection with SAHI and YOLOv8")
|
16 |
+
|
17 |
+
example_image_loaded = st.checkbox("Load example image")
|
18 |
+
uploaded_image = None
|
19 |
+
|
20 |
+
if example_image_loaded:
|
21 |
+
image = cv2.imread("example-image.jpg")
|
22 |
+
else:
|
23 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
24 |
+
if uploaded_image is not None:
|
25 |
+
image = cv2.imdecode(np.fromstring(uploaded_image.read(), np.uint8), 1)
|
26 |
+
|
27 |
+
if uploaded_image is not None or example_image_loaded:
|
28 |
+
with st.spinner("Loading..."):
|
29 |
+
|
30 |
+
start_time_sahi = time.time()
|
31 |
+
slicer = sv.InferenceSlicer(callback=callback)
|
32 |
+
sliced_detections = slicer(image=image)
|
33 |
+
end_time_sahi = time.time()
|
34 |
+
|
35 |
+
start_time_yolo = time.time()
|
36 |
+
yolo_results = model(image, verbose=False, conf=0.25)
|
37 |
+
end_time_yolo = time.time()
|
38 |
+
|
39 |
+
st.header("Original Image")
|
40 |
+
st.image(image, channels="BGR")
|
41 |
+
|
42 |
+
st.header("SAHI-Processed Image")
|
43 |
+
sliced_image = sv.BoxAnnotator().annotate(image.copy(), detections=sliced_detections)
|
44 |
+
st.image(sliced_image, channels="BGR")
|
45 |
+
|
46 |
+
st.header("YOLO-Detected Image (Without SAHI)")
|
47 |
+
yolo_image = sv.BoxAnnotator().annotate(image.copy(), detections=sv.Detections.from_ultralytics(yolo_results[0]))
|
48 |
+
st.image(yolo_image, channels="BGR")
|
49 |
+
|
50 |
+
st.subheader("Method Comparison")
|
51 |
+
st.write("SAHI Inference Time:", round(end_time_sahi - start_time_sahi, 2), "seconds")
|
52 |
+
st.write("YOLOv8 Inference Time:", round(end_time_yolo - start_time_yolo, 2), "seconds")
|
53 |
+
|
54 |
+
st.write("SAHI Detection Count:", len(sliced_detections))
|
55 |
+
st.write("YOLOv8 Detection Count:", len(yolo_results[0]))
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|
example-image.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
supervision
|
3 |
+
numpy
|