import cv2 import numpy as np def preprocess_image_simple(image_file): img = cv2.imdecode(np.fromstring(image_file.read(), np.uint8), 1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return gray def preprocess_image(image_file): img = cv2.imdecode(np.fromstring(image_file.read(), np.uint8), 1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) blur = cv2.GaussianBlur(thresh, (3,3), 0) thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 4) coords = np.column_stack(np.where(thresh > 0)) angle = cv2.minAreaRect(coords)[-1] if angle < -45: angle = -(90 + angle) else: angle = -angle (h, w) = thresh.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(thresh, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) return rotated def preprocess_image_high(image_file): img = cv2.imread(image_file) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Adaptive thresholding thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Morphological operations kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) opened = cv2.morphologyEx(closed, cv2.MORPH_OPEN, kernel) # Connected Component Analysis (CCA) num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(opened) filtered_labels = [] for i in range(1, num_labels): # Filter out components based on their size, aspect ratio, and position x, y, w, h, area = stats[i] aspect_ratio = float(w) / h if area > 100 and aspect_ratio < 5 and aspect_ratio > 0.2 and x > 10 and y > 10: filtered_labels.append(i) filtered = np.zeros_like(labels) for i, label in enumerate(filtered_labels): filtered[labels == label] = i + 1 # Skew correction coords = np.column_stack(np.where(filtered > 0)) angle = cv2.minAreaRect(coords)[-1] if angle < -45: angle = -(90 + angle) else: angle = -angle (h, w) = filtered.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(filtered, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) return rotated