Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
from threading import Thread
|
| 6 |
import spaces
|
|
@@ -9,27 +14,27 @@ import time
|
|
| 9 |
token = os.environ["HF_TOKEN"]
|
| 10 |
|
| 11 |
quantization_config = BitsAndBytesConfig(
|
| 12 |
-
load_in_4bit=True,
|
| 13 |
-
bnb_4bit_compute_dtype=torch.float16
|
| 14 |
)
|
| 15 |
|
| 16 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
-
|
| 18 |
-
|
| 19 |
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token)
|
| 20 |
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
-
device = torch.device(
|
| 23 |
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
| 24 |
else:
|
| 25 |
-
device = torch.device(
|
| 26 |
print("Using CPU")
|
| 27 |
-
|
| 28 |
# model = model.to(device)
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
@spaces.GPU
|
| 32 |
-
def chat(message, history):
|
| 33 |
start_time = time.time()
|
| 34 |
chat = []
|
| 35 |
for item in history:
|
|
@@ -40,16 +45,16 @@ def chat(message, history):
|
|
| 40 |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 41 |
model_inputs = tok([messages], return_tensors="pt").to(device)
|
| 42 |
streamer = TextIteratorStreamer(
|
| 43 |
-
tok, timeout=10
|
|
|
|
| 44 |
generate_kwargs = dict(
|
| 45 |
model_inputs,
|
| 46 |
streamer=streamer,
|
| 47 |
-
max_new_tokens=
|
| 48 |
do_sample=True,
|
| 49 |
-
top_p=
|
| 50 |
-
top_k=
|
| 51 |
-
temperature=
|
| 52 |
-
num_beams=1,
|
| 53 |
)
|
| 54 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 55 |
t.start()
|
|
@@ -66,9 +71,36 @@ def chat(message, history):
|
|
| 66 |
tokens = len(tok.tokenize(partial_text))
|
| 67 |
tokens_per_second = tokens / total_time if total_time > 0 else 0
|
| 68 |
|
| 69 |
-
|
| 70 |
-
timing_info = f"\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
|
| 71 |
yield partial_text + timing_info
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoModelForCausalLM,
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
TextIteratorStreamer,
|
| 7 |
+
BitsAndBytesConfig,
|
| 8 |
+
)
|
| 9 |
import os
|
| 10 |
from threading import Thread
|
| 11 |
import spaces
|
|
|
|
| 14 |
token = os.environ["HF_TOKEN"]
|
| 15 |
|
| 16 |
quantization_config = BitsAndBytesConfig(
|
| 17 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
"google/gemma-1.1-7b-it", quantization_config=quantization_config, token=token
|
| 22 |
+
)
|
| 23 |
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token)
|
| 24 |
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
+
device = torch.device("cuda")
|
| 27 |
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
| 28 |
else:
|
| 29 |
+
device = torch.device("cpu")
|
| 30 |
print("Using CPU")
|
| 31 |
+
|
| 32 |
# model = model.to(device)
|
| 33 |
+
# Dispatch Errors
|
| 34 |
+
|
| 35 |
|
| 36 |
@spaces.GPU
|
| 37 |
+
def chat(message, history, temperature, top_p, top_k, max_tokens):
|
| 38 |
start_time = time.time()
|
| 39 |
chat = []
|
| 40 |
for item in history:
|
|
|
|
| 45 |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 46 |
model_inputs = tok([messages], return_tensors="pt").to(device)
|
| 47 |
streamer = TextIteratorStreamer(
|
| 48 |
+
tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
| 49 |
+
)
|
| 50 |
generate_kwargs = dict(
|
| 51 |
model_inputs,
|
| 52 |
streamer=streamer,
|
| 53 |
+
max_new_tokens=max_tokens,
|
| 54 |
do_sample=True,
|
| 55 |
+
top_p=top_p,
|
| 56 |
+
top_k=top_k,
|
| 57 |
+
temperature=temperature,
|
|
|
|
| 58 |
)
|
| 59 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 60 |
t.start()
|
|
|
|
| 71 |
tokens = len(tok.tokenize(partial_text))
|
| 72 |
tokens_per_second = tokens / total_time if total_time > 0 else 0
|
| 73 |
|
| 74 |
+
timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
|
|
|
|
| 75 |
yield partial_text + timing_info
|
| 76 |
|
| 77 |
+
|
| 78 |
+
demo = gr.ChatInterface(
|
| 79 |
+
fn=chat,
|
| 80 |
+
examples=[["Write me a poem about Machine Learning."]],
|
| 81 |
+
additional_inputs_accordion=gr.Accordion(
|
| 82 |
+
label="⚙️ Parameters", open=False, render=False
|
| 83 |
+
),
|
| 84 |
+
additional_inputs=[
|
| 85 |
+
gr.Slider(
|
| 86 |
+
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
|
| 87 |
+
),
|
| 88 |
+
gr.Slider(
|
| 89 |
+
minimum=0, maximum=1, step=0.1, value=0.95, label="top_p", render=False
|
| 90 |
+
),
|
| 91 |
+
gr.Slider(
|
| 92 |
+
minimum=1, maximum=10000, step=5, value=1000, label="top_k", render=False
|
| 93 |
+
),
|
| 94 |
+
gr.Slider(
|
| 95 |
+
minimum=128,
|
| 96 |
+
maximum=4096,
|
| 97 |
+
step=1,
|
| 98 |
+
value=1024,
|
| 99 |
+
label="Max new tokens",
|
| 100 |
+
render=False,
|
| 101 |
+
),
|
| 102 |
+
],
|
| 103 |
+
multimodal=False,
|
| 104 |
+
title="Chat With LLMs",
|
| 105 |
+
)
|
| 106 |
demo.launch()
|