Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							Β·
						
						b0df4b4
	
1
								Parent(s):
							
							2b95436
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,39 +1,96 @@ | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            import os
         | 
|  | |
|  | |
| 3 | 
             
            from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
         | 
| 4 | 
             
            from haystack.schema import Answer
         | 
| 5 | 
             
            from haystack.document_stores import InMemoryDocumentStore
         | 
| 6 | 
            -
            from haystack.pipelines import ExtractiveQAPipeline
         | 
| 7 | 
            -
            from haystack.nodes import FARMReader, | 
|  | |
|  | |
|  | |
| 8 | 
             
            import logging
         | 
| 9 | 
             
            from markdown import markdown
         | 
| 10 | 
             
            from annotated_text import annotation
         | 
| 11 | 
             
            from PIL import Image
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 12 |  | 
| 13 | 
            -
            os.environ['TOKENIZERS_PARALLELISM'] ="false"
         | 
| 14 |  | 
| 15 | 
            -
            #Haystack Components
         | 
| 16 | 
            -
            @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True)
         | 
|  | |
| 17 | 
             
            def start_haystack():
         | 
| 18 | 
            -
                document_store = InMemoryDocumentStore()
         | 
|  | |
|  | |
|  | |
|  | |
| 19 | 
             
                load_and_write_data(document_store)
         | 
| 20 | 
            -
                retriever = TfidfRetriever(document_store=document_store)
         | 
| 21 | 
            -
                 | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 24 |  | 
| 25 | 
             
            def load_and_write_data(document_store):
         | 
| 26 | 
             
                doc_dir = './dao_data'
         | 
| 27 | 
            -
                docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, | 
|  | |
| 28 |  | 
| 29 | 
             
                document_store.write_documents(docs)
         | 
| 30 |  | 
|  | |
| 31 | 
             
            pipeline = start_haystack()
         | 
| 32 |  | 
|  | |
| 33 | 
             
            def set_state_if_absent(key, value):
         | 
| 34 | 
             
                if key not in st.session_state:
         | 
| 35 | 
             
                    st.session_state[key] = value
         | 
| 36 |  | 
|  | |
| 37 | 
             
            set_state_if_absent("question", "What is the goal of VitaDAO?")
         | 
| 38 | 
             
            set_state_if_absent("results", None)
         | 
| 39 |  | 
| @@ -41,31 +98,38 @@ set_state_if_absent("results", None) | |
| 41 | 
             
            def reset_results(*args):
         | 
| 42 | 
             
                st.session_state.results = None
         | 
| 43 |  | 
| 44 | 
            -
             | 
|  | |
| 45 |  | 
| 46 | 
             
            image = Image.open('got-haystack.png')
         | 
| 47 | 
             
            st.image(image)
         | 
| 48 |  | 
| 49 | 
            -
            st.markdown( | 
| 50 | 
            -
            This QA demo uses a [Haystack Extractive QA Pipeline]( | 
| 51 | 
            -
             | 
|  | |
|  | |
| 52 | 
             
            Go ahead and ask questions about the marvellous kingdom!
         | 
| 53 | 
             
            """, unsafe_allow_html=True)
         | 
| 54 |  | 
| 55 | 
            -
            question = st.text_input("", value=st.session_state.question, max_chars=100, | 
|  | |
|  | |
| 56 |  | 
| 57 | 
             
            def ask_question(question):
         | 
| 58 | 
            -
                prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
         | 
|  | |
| 59 | 
             
                results = []
         | 
| 60 | 
             
                for answer in prediction["answers"]:
         | 
| 61 | 
             
                    answer = answer.to_dict()
         | 
| 62 | 
             
                    if answer["answer"]:
         | 
|  | |
| 63 | 
             
                        results.append(
         | 
| 64 | 
             
                            {
         | 
| 65 | 
            -
                                "context": "..." + answer["context"] + "...",
         | 
| 66 | 
             
                                "answer": answer["answer"],
         | 
| 67 | 
            -
                                "relevance": round(answer["score"] * 100, 2),
         | 
| 68 | 
            -
                                "offset_start_in_doc": answer["offsets_in_document"][0]["start"],
         | 
| 69 | 
             
                            }
         | 
| 70 | 
             
                        )
         | 
| 71 | 
             
                    else:
         | 
| @@ -73,21 +137,20 @@ def ask_question(question): | |
| 73 | 
             
                            {
         | 
| 74 | 
             
                                "context": None,
         | 
| 75 | 
             
                                "answer": None,
         | 
| 76 | 
            -
                                "relevance": round(answer["score"] * 100, 2),
         | 
| 77 | 
             
                            }
         | 
| 78 | 
             
                        )
         | 
| 79 | 
             
                return results
         | 
| 80 |  | 
|  | |
| 81 | 
             
            if question:
         | 
| 82 | 
             
                with st.spinner("π    Performing semantic search on royal scripts..."):
         | 
| 83 | 
             
                    try:
         | 
| 84 | 
             
                        msg = 'Asked ' + question
         | 
| 85 | 
             
                        logging.info(msg)
         | 
| 86 | 
            -
                        st.session_state.results = ask_question(question) | 
| 87 | 
             
                    except Exception as e:
         | 
| 88 | 
             
                        logging.exception(e)
         | 
| 89 | 
            -
                
         | 
| 90 | 
            -
             | 
| 91 |  | 
| 92 | 
             
            if st.session_state.results:
         | 
| 93 | 
             
                st.write('## Top Results')
         | 
| @@ -97,11 +160,14 @@ if st.session_state.results: | |
| 97 | 
             
                        start_idx = context.find(answer)
         | 
| 98 | 
             
                        end_idx = start_idx + len(answer)
         | 
| 99 | 
             
                        st.write(
         | 
| 100 | 
            -
                            markdown(context[:start_idx] + str( | 
|  | |
|  | |
| 101 | 
             
                            unsafe_allow_html=True,
         | 
| 102 | 
             
                        )
         | 
| 103 | 
            -
                        st.markdown(f"**Relevance:** {result['relevance']}")
         | 
| 104 | 
             
                    else:
         | 
| 105 | 
             
                        st.info(
         | 
| 106 | 
            -
                            "π€    Haystack is unsure whether any of the documents contain an  | 
|  | |
| 107 | 
             
                        )
         | 
|  | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            import os
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from haystack import Pipeline
         | 
| 5 | 
             
            from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
         | 
| 6 | 
             
            from haystack.schema import Answer
         | 
| 7 | 
             
            from haystack.document_stores import InMemoryDocumentStore
         | 
| 8 | 
            +
            from haystack.pipelines import DocumentSearchPipeline, ExtractiveQAPipeline, GenerativeQAPipeline
         | 
| 9 | 
            +
            from haystack.nodes import (DensePassageRetriever, EmbeddingRetriever, FARMReader,
         | 
| 10 | 
            +
                                        OpenAIAnswerGenerator, Seq2SeqGenerator,
         | 
| 11 | 
            +
                                        TfidfRetriever)
         | 
| 12 | 
            +
            from haystack.nodes import RAGenerator
         | 
| 13 | 
             
            import logging
         | 
| 14 | 
             
            from markdown import markdown
         | 
| 15 | 
             
            from annotated_text import annotation
         | 
| 16 | 
             
            from PIL import Image
         | 
| 17 | 
            +
            logging.basicConfig(format="%(levelname)s - %(name)s -  %(message)s", level=logging.WARNING)
         | 
| 18 | 
            +
            logging.getLogger("haystack").setLevel(logging.INFO)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            os.environ['TOKENIZERS_PARALLELISM'] = "false"
         | 
| 21 | 
            +
            MY_API_KEY = os.environ.get("MY_API_KEY")
         | 
| 22 |  | 
|  | |
| 23 |  | 
| 24 | 
            +
            # Haystack Components
         | 
| 25 | 
            +
            # @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True)
         | 
| 26 | 
            +
            @st.cache_data
         | 
| 27 | 
             
            def start_haystack():
         | 
| 28 | 
            +
                # document_store = InMemoryDocumentStore()
         | 
| 29 | 
            +
                # For dense retriever
         | 
| 30 | 
            +
                document_store = InMemoryDocumentStore(embedding_dim=128)
         | 
| 31 | 
            +
                # For OPEN AI retriever
         | 
| 32 | 
            +
                # document_store = InMemoryDocumentStore(embedding_dim=1024)
         | 
| 33 | 
             
                load_and_write_data(document_store)
         | 
| 34 | 
            +
                # retriever = TfidfRetriever(document_store=document_store)
         | 
| 35 | 
            +
                retriever = DensePassageRetriever(
         | 
| 36 | 
            +
                    document_store=document_store,
         | 
| 37 | 
            +
                    query_embedding_model="vblagoje/dpr-question_encoder-single-lfqa-wiki",
         | 
| 38 | 
            +
                    passage_embedding_model="vblagoje/dpr-ctx_encoder-single-lfqa-wiki",
         | 
| 39 | 
            +
                )
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                # retriever = EmbeddingRetriever(
         | 
| 42 | 
            +
                #     document_store=document_store,
         | 
| 43 | 
            +
                #     embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
         | 
| 44 | 
            +
                #     model_format="sentence_transformers",
         | 
| 45 | 
            +
                # )
         | 
| 46 | 
            +
                document_store.update_embeddings(retriever)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                # OPEN AI
         | 
| 49 | 
            +
                # retriever = EmbeddingRetriever(
         | 
| 50 | 
            +
                #     document_store=document_store,
         | 
| 51 | 
            +
                #     batch_size=8,
         | 
| 52 | 
            +
                #     embedding_model="ada",
         | 
| 53 | 
            +
                #     api_key=MY_API_KEY,
         | 
| 54 | 
            +
                #     max_seq_len=1024
         | 
| 55 | 
            +
                # )
         | 
| 56 | 
            +
                # document_store.update_embeddings(retriever)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True)
         | 
| 59 | 
            +
                # pipeline = ExtractiveQAPipeline(reader, retriever)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                generator = Seq2SeqGenerator(model_name_or_path="vblagoje/bart_lfqa")
         | 
| 62 | 
            +
                # generator = OpenAIAnswerGenerator(
         | 
| 63 | 
            +
                #     api_key=MY_API_KEY,
         | 
| 64 | 
            +
                #     model="text-davinci-003",
         | 
| 65 | 
            +
                #     max_tokens=50,
         | 
| 66 | 
            +
                #     presence_penalty=0.1,
         | 
| 67 | 
            +
                #     frequency_penalty=0.1,
         | 
| 68 | 
            +
                #     top_k=3,
         | 
| 69 | 
            +
                #     temperature=0.9
         | 
| 70 | 
            +
                # )
         | 
| 71 | 
            +
                # pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
         | 
| 72 | 
            +
                # pipe.add_node(component=generator, name="prompt_node", inputs=["Query"])
         | 
| 73 | 
            +
                pipe = GenerativeQAPipeline(generator=generator, retriever=retriever)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                return pipe
         | 
| 76 | 
            +
             | 
| 77 |  | 
| 78 | 
             
            def load_and_write_data(document_store):
         | 
| 79 | 
             
                doc_dir = './dao_data'
         | 
| 80 | 
            +
                docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text,
         | 
| 81 | 
            +
                                             split_paragraphs=True)
         | 
| 82 |  | 
| 83 | 
             
                document_store.write_documents(docs)
         | 
| 84 |  | 
| 85 | 
            +
             | 
| 86 | 
             
            pipeline = start_haystack()
         | 
| 87 |  | 
| 88 | 
            +
             | 
| 89 | 
             
            def set_state_if_absent(key, value):
         | 
| 90 | 
             
                if key not in st.session_state:
         | 
| 91 | 
             
                    st.session_state[key] = value
         | 
| 92 |  | 
| 93 | 
            +
             | 
| 94 | 
             
            set_state_if_absent("question", "What is the goal of VitaDAO?")
         | 
| 95 | 
             
            set_state_if_absent("results", None)
         | 
| 96 |  | 
|  | |
| 98 | 
             
            def reset_results(*args):
         | 
| 99 | 
             
                st.session_state.results = None
         | 
| 100 |  | 
| 101 | 
            +
             | 
| 102 | 
            +
            # Streamlit App
         | 
| 103 |  | 
| 104 | 
             
            image = Image.open('got-haystack.png')
         | 
| 105 | 
             
            st.image(image)
         | 
| 106 |  | 
| 107 | 
            +
            st.markdown("""
         | 
| 108 | 
            +
            This QA demo uses a [Haystack Extractive QA Pipeline](
         | 
| 109 | 
            +
            https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with 
         | 
| 110 | 
            +
            an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains 
         | 
| 111 | 
            +
            documents about Game of Thrones π
         | 
| 112 | 
             
            Go ahead and ask questions about the marvellous kingdom!
         | 
| 113 | 
             
            """, unsafe_allow_html=True)
         | 
| 114 |  | 
| 115 | 
            +
            question = st.text_input("", value=st.session_state.question, max_chars=100,
         | 
| 116 | 
            +
                                     on_change=reset_results)
         | 
| 117 | 
            +
             | 
| 118 |  | 
| 119 | 
             
            def ask_question(question):
         | 
| 120 | 
            +
                # prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
         | 
| 121 | 
            +
                prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Generator": {"top_k": 1}})
         | 
| 122 | 
             
                results = []
         | 
| 123 | 
             
                for answer in prediction["answers"]:
         | 
| 124 | 
             
                    answer = answer.to_dict()
         | 
| 125 | 
             
                    if answer["answer"]:
         | 
| 126 | 
            +
                        print(answer)
         | 
| 127 | 
             
                        results.append(
         | 
| 128 | 
             
                            {
         | 
| 129 | 
            +
                                "context": "..." + str(answer["context"]) + "...",
         | 
| 130 | 
             
                                "answer": answer["answer"],
         | 
| 131 | 
            +
                                # "relevance": round(answer["score"] * 100, 2),
         | 
| 132 | 
            +
                                # "offset_start_in_doc": answer["offsets_in_document"][0]["start"],
         | 
| 133 | 
             
                            }
         | 
| 134 | 
             
                        )
         | 
| 135 | 
             
                    else:
         | 
|  | |
| 137 | 
             
                            {
         | 
| 138 | 
             
                                "context": None,
         | 
| 139 | 
             
                                "answer": None,
         | 
| 140 | 
            +
                                # "relevance": round(answer["score"] * 100, 2),
         | 
| 141 | 
             
                            }
         | 
| 142 | 
             
                        )
         | 
| 143 | 
             
                return results
         | 
| 144 |  | 
| 145 | 
            +
             | 
| 146 | 
             
            if question:
         | 
| 147 | 
             
                with st.spinner("π    Performing semantic search on royal scripts..."):
         | 
| 148 | 
             
                    try:
         | 
| 149 | 
             
                        msg = 'Asked ' + question
         | 
| 150 | 
             
                        logging.info(msg)
         | 
| 151 | 
            +
                        st.session_state.results = ask_question(question)
         | 
| 152 | 
             
                    except Exception as e:
         | 
| 153 | 
             
                        logging.exception(e)
         | 
|  | |
|  | |
| 154 |  | 
| 155 | 
             
            if st.session_state.results:
         | 
| 156 | 
             
                st.write('## Top Results')
         | 
|  | |
| 160 | 
             
                        start_idx = context.find(answer)
         | 
| 161 | 
             
                        end_idx = start_idx + len(answer)
         | 
| 162 | 
             
                        st.write(
         | 
| 163 | 
            +
                            markdown(context[:start_idx] + str(
         | 
| 164 | 
            +
                                annotation(body=answer, label="ANSWER", background="#964448",
         | 
| 165 | 
            +
                                           color='#ffffff')) + context[end_idx:]),
         | 
| 166 | 
             
                            unsafe_allow_html=True,
         | 
| 167 | 
             
                        )
         | 
| 168 | 
            +
                        # st.markdown(f"**Relevance:** {result['relevance']}")
         | 
| 169 | 
             
                    else:
         | 
| 170 | 
             
                        st.info(
         | 
| 171 | 
            +
                            "π€    Haystack is unsure whether any of the documents contain an "
         | 
| 172 | 
            +
                            "answer to your question. Try to reformulate it!"
         | 
| 173 | 
             
                        )
         | 
