Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from diffusers import FluxPipeline
|
5 |
+
import json
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import time
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
MODEL_ID = "black-forest-labs/FLUX.1-dev" # Base model
|
11 |
+
YOUR_LORA = "anuraj-sisyphus/avatar-loras" # Your LoRA model
|
12 |
+
DEFAULT_PROMPT = "a portrait of a person with realistic details, high quality"
|
13 |
+
DEFAULT_NEG_PROMPT = "low quality, blurry, distorted, deformed features"
|
14 |
+
|
15 |
+
# Create a list of available LoRAs
|
16 |
+
# You can expand this with other compatible LoRAs if desired
|
17 |
+
LORAS = [
|
18 |
+
{
|
19 |
+
"name": "Avatar LoRAs",
|
20 |
+
"repo_id": "anuraj-sisyphus/avatar-loras",
|
21 |
+
"filename": "SLAY1MNSHA.safetensors", # Update this with the actual filename
|
22 |
+
"base_model": "FLUX.1-dev"
|
23 |
+
}
|
24 |
+
]
|
25 |
+
|
26 |
+
# Initialize the pipeline
|
27 |
+
@torch.inference_mode()
|
28 |
+
def load_model():
|
29 |
+
pipe = FluxPipeline.from_pretrained(
|
30 |
+
MODEL_ID,
|
31 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
32 |
+
)
|
33 |
+
|
34 |
+
if torch.cuda.is_available():
|
35 |
+
pipe = pipe.to("cuda")
|
36 |
+
|
37 |
+
return pipe
|
38 |
+
|
39 |
+
# Generate image function
|
40 |
+
def generate_image(
|
41 |
+
prompt,
|
42 |
+
negative_prompt,
|
43 |
+
lora_selection,
|
44 |
+
lora_scale=0.8,
|
45 |
+
guidance_scale=5.0,
|
46 |
+
steps=30,
|
47 |
+
width=1024,
|
48 |
+
height=1024,
|
49 |
+
seed=None
|
50 |
+
):
|
51 |
+
# Load model if not already loaded
|
52 |
+
global pipe
|
53 |
+
if "pipe" not in globals():
|
54 |
+
pipe = load_model()
|
55 |
+
|
56 |
+
# Set the seed for reproducibility
|
57 |
+
if seed is None or seed == 0:
|
58 |
+
seed = int(time.time()) % 100000
|
59 |
+
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
|
60 |
+
|
61 |
+
# Find the selected LoRA details
|
62 |
+
selected_lora = None
|
63 |
+
for lora in LORAS:
|
64 |
+
if lora["name"] == lora_selection:
|
65 |
+
selected_lora = lora
|
66 |
+
break
|
67 |
+
|
68 |
+
if selected_lora:
|
69 |
+
# Unload any previous LoRA
|
70 |
+
try:
|
71 |
+
pipe.unload_lora_weights()
|
72 |
+
except:
|
73 |
+
pass
|
74 |
+
|
75 |
+
# Load the selected LoRA
|
76 |
+
pipe.load_lora_weights(
|
77 |
+
selected_lora["repo_id"],
|
78 |
+
weight_name=selected_lora.get("filename", None)
|
79 |
+
)
|
80 |
+
|
81 |
+
# Set the LoRA scale
|
82 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
83 |
+
|
84 |
+
# Generate the image
|
85 |
+
image = pipe(
|
86 |
+
prompt=prompt,
|
87 |
+
negative_prompt=negative_prompt,
|
88 |
+
guidance_scale=guidance_scale,
|
89 |
+
num_inference_steps=steps,
|
90 |
+
width=width,
|
91 |
+
height=height,
|
92 |
+
generator=generator
|
93 |
+
).images[0]
|
94 |
+
|
95 |
+
return image, seed
|
96 |
+
|
97 |
+
# Create the Gradio interface
|
98 |
+
with gr.Blocks(title="Avatar LoRAs Explorer") as demo:
|
99 |
+
gr.Markdown("# Avatar LoRAs Explorer")
|
100 |
+
gr.Markdown("Generate images using the Avatar LoRAs model. Adjust settings to customize your results.")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=2):
|
104 |
+
prompt = gr.Textbox(
|
105 |
+
label="Prompt",
|
106 |
+
placeholder="Enter your prompt here...",
|
107 |
+
value=DEFAULT_PROMPT,
|
108 |
+
lines=3
|
109 |
+
)
|
110 |
+
negative_prompt = gr.Textbox(
|
111 |
+
label="Negative Prompt",
|
112 |
+
placeholder="Enter what you don't want to see...",
|
113 |
+
value=DEFAULT_NEG_PROMPT,
|
114 |
+
lines=2
|
115 |
+
)
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
lora_selection = gr.Dropdown(
|
119 |
+
label="Select LoRA Model",
|
120 |
+
choices=[lora["name"] for lora in LORAS],
|
121 |
+
value=LORAS[0]["name"]
|
122 |
+
)
|
123 |
+
lora_scale = gr.Slider(
|
124 |
+
label="LoRA Scale",
|
125 |
+
minimum=0.0,
|
126 |
+
maximum=1.5,
|
127 |
+
step=0.05,
|
128 |
+
value=0.8
|
129 |
+
)
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
guidance_scale = gr.Slider(
|
133 |
+
label="Guidance Scale",
|
134 |
+
minimum=1.0,
|
135 |
+
maximum=15.0,
|
136 |
+
step=0.5,
|
137 |
+
value=5.0
|
138 |
+
)
|
139 |
+
steps = gr.Slider(
|
140 |
+
label="Steps",
|
141 |
+
minimum=10,
|
142 |
+
maximum=100,
|
143 |
+
step=1,
|
144 |
+
value=30
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
width = gr.Slider(
|
149 |
+
label="Width",
|
150 |
+
minimum=512,
|
151 |
+
maximum=1536,
|
152 |
+
step=64,
|
153 |
+
value=1024
|
154 |
+
)
|
155 |
+
height = gr.Slider(
|
156 |
+
label="Height",
|
157 |
+
minimum=512,
|
158 |
+
maximum=1536,
|
159 |
+
step=64,
|
160 |
+
value=1024
|
161 |
+
)
|
162 |
+
|
163 |
+
seed = gr.Number(
|
164 |
+
label="Seed (0 for random)",
|
165 |
+
value=0,
|
166 |
+
precision=0
|
167 |
+
)
|
168 |
+
|
169 |
+
generate_button = gr.Button("Generate Image", variant="primary")
|
170 |
+
|
171 |
+
with gr.Column(scale=2):
|
172 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
173 |
+
used_seed = gr.Number(label="Used Seed", value=0, precision=0)
|
174 |
+
|
175 |
+
# Setup the button click event
|
176 |
+
generate_button.click(
|
177 |
+
fn=generate_image,
|
178 |
+
inputs=[
|
179 |
+
prompt,
|
180 |
+
negative_prompt,
|
181 |
+
lora_selection,
|
182 |
+
lora_scale,
|
183 |
+
guidance_scale,
|
184 |
+
steps,
|
185 |
+
width,
|
186 |
+
height,
|
187 |
+
seed
|
188 |
+
],
|
189 |
+
outputs=[output_image, used_seed]
|
190 |
+
)
|
191 |
+
|
192 |
+
# Add examples if you have any
|
193 |
+
gr.Examples(
|
194 |
+
examples=[
|
195 |
+
[
|
196 |
+
"a portrait photo of a person with blue eyes",
|
197 |
+
DEFAULT_NEG_PROMPT,
|
198 |
+
LORAS[0]["name"],
|
199 |
+
0.8,
|
200 |
+
5.0,
|
201 |
+
30,
|
202 |
+
1024,
|
203 |
+
1024,
|
204 |
+
42
|
205 |
+
]
|
206 |
+
],
|
207 |
+
inputs=[
|
208 |
+
prompt,
|
209 |
+
negative_prompt,
|
210 |
+
lora_selection,
|
211 |
+
lora_scale,
|
212 |
+
guidance_scale,
|
213 |
+
steps,
|
214 |
+
width,
|
215 |
+
height,
|
216 |
+
seed
|
217 |
+
],
|
218 |
+
outputs=[output_image, used_seed]
|
219 |
+
)
|
220 |
+
|
221 |
+
# Launch the app
|
222 |
+
demo.launch()
|