Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from diffusers import FluxPipeline | |
import json | |
from huggingface_hub import hf_hub_download | |
import time | |
from huggingface_hub import login | |
# Hugging Face hesabında oturum aç | |
if "HF_TOKEN" in os.environ: | |
login(token=os.environ["HF_TOKEN"]) | |
else: | |
# İsteğe bağlı: Token yoksa uyarı göster | |
print("HF_TOKEN bulunamadı, giriş yapılamıyor") | |
# Diğer kodlar buradan devam edecek... | |
# Constants | |
MODEL_ID = "black-forest-labs/FLUX.1-dev" # Base model | |
YOUR_LORA = "anuraj-sisyphus/avatar-loras" # Your LoRA model | |
DEFAULT_PROMPT = "a portrait of a person with realistic details, high quality" | |
DEFAULT_NEG_PROMPT = "low quality, blurry, distorted, deformed features" | |
# Create a list of available LoRAs | |
# You can expand this with other compatible LoRAs if desired | |
LORAS = [ | |
{ | |
"name": "Avatar LoRAs", | |
"repo_id": "anuraj-sisyphus/avatar-loras", | |
"filename": "SLAY1MNSHA.safetensors", # Update this with the actual filename | |
"base_model": "FLUX.1-dev" | |
} | |
] | |
# Initialize the pipeline | |
def load_model(): | |
pipe = FluxPipeline.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
return pipe | |
# Generate image function | |
def generate_image( | |
prompt, | |
negative_prompt, | |
lora_selection, | |
lora_scale=0.8, | |
guidance_scale=5.0, | |
steps=30, | |
width=1024, | |
height=1024, | |
seed=None | |
): | |
# Load model if not already loaded | |
global pipe | |
if "pipe" not in globals(): | |
pipe = load_model() | |
# Set the seed for reproducibility | |
if seed is None or seed == 0: | |
seed = int(time.time()) % 100000 | |
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed) | |
# Find the selected LoRA details | |
selected_lora = None | |
for lora in LORAS: | |
if lora["name"] == lora_selection: | |
selected_lora = lora | |
break | |
if selected_lora: | |
# Unload any previous LoRA | |
try: | |
pipe.unload_lora_weights() | |
except: | |
pass | |
# Load the selected LoRA | |
pipe.load_lora_weights( | |
selected_lora["repo_id"], | |
weight_name=selected_lora.get("filename", None) | |
) | |
# Set the LoRA scale | |
pipe.fuse_lora(lora_scale=lora_scale) | |
# Generate the image | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return image, seed | |
# Create the Gradio interface | |
with gr.Blocks(title="Avatar LoRAs Explorer") as demo: | |
gr.Markdown("# Avatar LoRAs Explorer") | |
gr.Markdown("Generate images using the Avatar LoRAs model. Adjust settings to customize your results.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt here...", | |
value=DEFAULT_PROMPT, | |
lines=3 | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="Enter what you don't want to see...", | |
value=DEFAULT_NEG_PROMPT, | |
lines=2 | |
) | |
with gr.Row(): | |
lora_selection = gr.Dropdown( | |
label="Select LoRA Model", | |
choices=[lora["name"] for lora in LORAS], | |
value=LORAS[0]["name"] | |
) | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0.0, | |
maximum=1.5, | |
step=0.05, | |
value=0.8 | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1.0, | |
maximum=15.0, | |
step=0.5, | |
value=5.0 | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=30 | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=1536, | |
step=64, | |
value=1024 | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=1536, | |
step=64, | |
value=1024 | |
) | |
seed = gr.Number( | |
label="Seed (0 for random)", | |
value=0, | |
precision=0 | |
) | |
generate_button = gr.Button("Generate Image", variant="primary") | |
with gr.Column(scale=2): | |
output_image = gr.Image(label="Generated Image", type="pil") | |
used_seed = gr.Number(label="Used Seed", value=0, precision=0) | |
# Setup the button click event | |
generate_button.click( | |
fn=generate_image, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
lora_selection, | |
lora_scale, | |
guidance_scale, | |
steps, | |
width, | |
height, | |
seed | |
], | |
outputs=[output_image, used_seed] | |
) | |
# Add examples if you have any | |
gr.Examples( | |
examples=[ | |
[ | |
"a portrait photo of a person with blue eyes", | |
DEFAULT_NEG_PROMPT, | |
LORAS[0]["name"], | |
0.8, | |
5.0, | |
30, | |
1024, | |
1024, | |
42 | |
] | |
], | |
inputs=[ | |
prompt, | |
negative_prompt, | |
lora_selection, | |
lora_scale, | |
guidance_scale, | |
steps, | |
width, | |
height, | |
seed | |
], | |
outputs=[output_image, used_seed] | |
) | |
# Launch the app | |
demo.launch() |