Spaces:
Sleeping
Sleeping
| import os | |
| import subprocess | |
| # Убираем pyenv | |
| os.environ.pop("PYENV_VERSION", None) | |
| # Установка зависимостей | |
| subprocess.run(["pip", "install", "torch", "wheel"], check=True) | |
| subprocess.run([ | |
| "pip", "install", "--no-build-isolation", | |
| "diso@git+https://github.com/SarahWeiii/diso.git" | |
| ], check=True) | |
| # Импорты (перенесены после установки зависимостей) | |
| import gradio as gr | |
| import uuid | |
| import torch | |
| import zipfile | |
| import requests | |
| import traceback | |
| import trimesh | |
| import numpy as np | |
| from trimesh.exchange.gltf import export_glb | |
| from inference_triposg import run_triposg | |
| from triposg.pipelines.pipeline_triposg import TripoSGPipeline | |
| from briarmbg import BriaRMBG | |
| print("Trimesh version:", trimesh.__version__) | |
| # Настройки устройства | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if device == "cuda" else torch.float32 | |
| # Загрузка весов | |
| weights_dir = "pretrained_weights" | |
| triposg_path = os.path.join(weights_dir, "TripoSG") | |
| rmbg_path = os.path.join(weights_dir, "RMBG-1.4") | |
| if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): | |
| print("📦 Downloading pretrained weights...") | |
| url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" | |
| zip_path = "pretrained_models.zip" | |
| with requests.get(url, stream=True) as r: | |
| r.raise_for_status() | |
| with open(zip_path, "wb") as f: | |
| for chunk in r.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print("📦 Extracting weights...") | |
| with zipfile.ZipFile(zip_path, "r") as zip_ref: | |
| zip_ref.extractall(weights_dir) | |
| os.remove(zip_path) | |
| print("✅ Weights ready.") | |
| # Загрузка моделей | |
| pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) | |
| rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) | |
| rmbg_net.eval() | |
| # Генерация .glb | |
| # def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
| # print("[API CALL] image_path received:", image_path) | |
| # print("[API CALL] File exists:", os.path.exists(image_path)) | |
| # temp_id = str(uuid.uuid4()) | |
| # output_path = f"/tmp/{temp_id}.glb" | |
| # print("[DEBUG] Generating mesh from:", image_path) | |
| # try: | |
| # mesh = run_triposg( | |
| # pipe=pipe, | |
| # image_input=image_path, | |
| # rmbg_net=rmbg_net, | |
| # seed=42, | |
| # num_inference_steps=int(num_steps), | |
| # guidance_scale=float(guidance_scale), | |
| # faces=int(face_number), | |
| # ) | |
| # if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
| # raise ValueError("Mesh generation returned an empty mesh") | |
| # mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces) | |
| # mesh.rezero() | |
| # mesh.fix_normals() | |
| # mesh.apply_translation(-mesh.center_mass) | |
| # # Масштабируем, чтобы модель вписывалась в размер 1x1x1 | |
| # # Если нужно будет подгонять под размер в Endless Tools, то можно использовать: | |
| # # scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1)) | |
| # # mesh.apply_scale(scale_factor) | |
| # glb_data = mesh.export(file_type='glb') | |
| # with open(output_path, "wb") as f: | |
| # f.write(glb_data) | |
| # print(f"[DEBUG] Mesh saved to {output_path}") | |
| # return output_path if os.path.exists(output_path) else None | |
| # except Exception as e: | |
| # print("[ERROR]", e) | |
| # traceback.print_exc() | |
| # return f"Error: {e}" | |
| def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): | |
| print("[API CALL] image_path received:", image_path) | |
| print("[API CALL] File exists:", os.path.exists(image_path)) | |
| temp_id = str(uuid.uuid4()) | |
| output_path = f"/tmp/{temp_id}.glb" | |
| print("[DEBUG] Generating mesh from:", image_path) | |
| try: | |
| mesh = run_triposg( | |
| pipe=pipe, | |
| image_input=image_path, | |
| rmbg_net=rmbg_net, | |
| seed=42, | |
| num_inference_steps=int(num_steps), | |
| guidance_scale=float(guidance_scale), | |
| faces=int(face_number), | |
| ) | |
| if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
| raise ValueError("Mesh generation returned an empty mesh") | |
| # 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии | |
| mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True) | |
| # ✅ Центрируем модель | |
| mesh.apply_translation(-mesh.center_mass) | |
| # ✅ Масштабируем к единичному размеру (все модели ~одинаковые) | |
| scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1)) | |
| mesh.apply_scale(scale_factor) | |
| # ✅ Гарантированно пересчитываем нормали | |
| mesh.fix_normals() | |
| # print("[DEBUG] Normals present:", mesh.has_vertex_normals) | |
| if hasattr(mesh, "vertex_normals"): | |
| print("[DEBUG] Normals shape:", mesh.vertex_normals.shape) | |
| else: | |
| print("[DEBUG] Normals missing.") | |
| # 💾 Сохраняем GLB | |
| glb_data = mesh.export(file_type='glb') | |
| with open(output_path, "wb") as f: | |
| f.write(glb_data) | |
| print(f"[DEBUG] Mesh saved to {output_path}") | |
| return output_path if os.path.exists(output_path) else None | |
| except Exception as e: | |
| print("[ERROR]", e) | |
| traceback.print_exc() | |
| return f"Error: {e}" | |
| # Интерфейс Gradio | |
| demo = gr.Interface( | |
| fn=generate, | |
| inputs=gr.Image(type="filepath", label="Upload image"), | |
| outputs=gr.File(label="Download .glb"), | |
| title="TripoSG Image to 3D", | |
| description="Upload an image to generate a 3D model (.glb)", | |
| ) | |
| # Запуск | |
| demo.launch() | |