Spaces:
Runtime error
Runtime error
Merge pull request #23 from LightricksResearch/bfloat16-inference
Browse files
xora/examples/image_to_video.py
CHANGED
|
@@ -142,6 +142,12 @@ def main():
|
|
| 142 |
help="Mixed precision in float32 and bfloat16",
|
| 143 |
)
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
# Prompts
|
| 146 |
parser.add_argument(
|
| 147 |
"--prompt",
|
|
@@ -176,6 +182,9 @@ def main():
|
|
| 176 |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
| 177 |
)
|
| 178 |
|
|
|
|
|
|
|
|
|
|
| 179 |
# Use submodels for the pipeline
|
| 180 |
submodel_dict = {
|
| 181 |
"transformer": unet,
|
|
|
|
| 142 |
help="Mixed precision in float32 and bfloat16",
|
| 143 |
)
|
| 144 |
|
| 145 |
+
parser.add_argument(
|
| 146 |
+
"--bfloat16",
|
| 147 |
+
action="store_true",
|
| 148 |
+
help="Denoise in bfloat16",
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
# Prompts
|
| 152 |
parser.add_argument(
|
| 153 |
"--prompt",
|
|
|
|
| 182 |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
| 183 |
)
|
| 184 |
|
| 185 |
+
if args.bfloat16 and unet.dtype != torch.bfloat16:
|
| 186 |
+
unet = unet.to(torch.bfloat16)
|
| 187 |
+
|
| 188 |
# Use submodels for the pipeline
|
| 189 |
submodel_dict = {
|
| 190 |
"transformer": unet,
|
xora/examples/text_to_video.py
CHANGED
|
@@ -49,6 +49,16 @@ def main():
|
|
| 49 |
required=True,
|
| 50 |
help="Path to the directory containing unet, vae, and scheduler subdirectories",
|
| 51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
args = parser.parse_args()
|
| 53 |
|
| 54 |
# Paths for the separate mode directories
|
|
@@ -72,6 +82,9 @@ def main():
|
|
| 72 |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
| 73 |
)
|
| 74 |
|
|
|
|
|
|
|
|
|
|
| 75 |
# Use submodels for the pipeline
|
| 76 |
submodel_dict = {
|
| 77 |
"transformer": unet, # using unet for transformer
|
|
@@ -115,6 +128,7 @@ def main():
|
|
| 115 |
**sample,
|
| 116 |
is_video=True,
|
| 117 |
vae_per_channel_normalize=True,
|
|
|
|
| 118 |
).images
|
| 119 |
|
| 120 |
print("Generated images (video frames).")
|
|
|
|
| 49 |
required=True,
|
| 50 |
help="Path to the directory containing unet, vae, and scheduler subdirectories",
|
| 51 |
)
|
| 52 |
+
parser.add_argument(
|
| 53 |
+
"--mixed_precision",
|
| 54 |
+
action="store_true",
|
| 55 |
+
help="Mixed precision in float32 and bfloat16",
|
| 56 |
+
)
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
"--bfloat16",
|
| 59 |
+
action="store_true",
|
| 60 |
+
help="Denoise in bfloat16",
|
| 61 |
+
)
|
| 62 |
args = parser.parse_args()
|
| 63 |
|
| 64 |
# Paths for the separate mode directories
|
|
|
|
| 82 |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
| 83 |
)
|
| 84 |
|
| 85 |
+
if args.bfloat16 and unet.dtype != torch.bfloat16:
|
| 86 |
+
unet = unet.to(torch.bfloat16)
|
| 87 |
+
|
| 88 |
# Use submodels for the pipeline
|
| 89 |
submodel_dict = {
|
| 90 |
"transformer": unet, # using unet for transformer
|
|
|
|
| 128 |
**sample,
|
| 129 |
is_video=True,
|
| 130 |
vae_per_channel_normalize=True,
|
| 131 |
+
mixed_precision=args.mixed_precision,
|
| 132 |
).images
|
| 133 |
|
| 134 |
print("Generated images (video frames).")
|
xora/models/transformers/transformer3d.py
CHANGED
|
@@ -253,7 +253,7 @@ class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
| 253 |
return fractional_positions
|
| 254 |
|
| 255 |
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
|
| 256 |
-
dtype =
|
| 257 |
dim = self.inner_dim
|
| 258 |
theta = self.positional_embedding_theta
|
| 259 |
|
|
@@ -305,7 +305,7 @@ class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
| 305 |
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
| 306 |
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
| 307 |
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
| 308 |
-
return cos_freq.to(dtype), sin_freq.to(dtype)
|
| 309 |
|
| 310 |
def forward(
|
| 311 |
self,
|
|
|
|
| 253 |
return fractional_positions
|
| 254 |
|
| 255 |
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
|
| 256 |
+
dtype = torch.float32 # We need full precision in the freqs_cis computation.
|
| 257 |
dim = self.inner_dim
|
| 258 |
theta = self.positional_embedding_theta
|
| 259 |
|
|
|
|
| 305 |
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
| 306 |
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
| 307 |
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
| 308 |
+
return cos_freq.to(self.dtype), sin_freq.to(self.dtype)
|
| 309 |
|
| 310 |
def forward(
|
| 311 |
self,
|