import gradio as gr from utils import SafeProgress from embeddings import create_product_embeddings from similarity import compute_similarities from chicory_api import call_chicory_parser from ui_core import embeddings, parse_input from ui_formatters import format_categories_html, create_results_container def categorize_products(product_input, is_file=False, top_n=10, confidence_threshold=0.5, progress=gr.Progress()): """Categorize products from text input or file""" progress_tracker = SafeProgress(progress) progress_tracker(0, desc="Starting...") # Parse input product_names, error = parse_input(product_input, is_file) if error: return error # Validate embeddings are loaded if not embeddings: return "
Error: No ingredient embeddings loaded. Please check that the embeddings file exists and is properly formatted.
" # Create embeddings progress_tracker(0.2, desc="Generating product embeddings...") products_embeddings = create_product_embeddings(product_names, progress=progress) if not products_embeddings: return "
Error: Failed to generate product embeddings. Please try again with different product names.
" # Call Chicory Parser API progress_tracker(0.5, desc="Calling Chicory Parser API...") chicory_results = call_chicory_parser(product_names, progress=progress) # Compute similarities progress_tracker(0.7, desc="Computing similarities...") all_similarities = compute_similarities(embeddings, products_embeddings) # Format results progress_tracker(0.9, desc="Formatting results...") output_html = "
" output_html += f"

Processing {len(product_names)} products.

" for product, similarities in all_similarities.items(): filtered_similarities = [(ingredient, score) for ingredient, score in similarities if score >= confidence_threshold] top_similarities = filtered_similarities[:int(top_n)] # Debug info for Chicory results chicory_data = chicory_results.get(product, []) output_html += format_categories_html(product, top_similarities, chicory_result=chicory_data) output_html += "
" output_html += "
" if not all_similarities: output_html = "
No results found. Please check your input or try different products.
" progress_tracker(1.0, desc="Done!") return output_html