Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +340 -0
- readme.md +43 -0
- requirements.txt +3 -0
- run_app.sh +14 -0
- spaces.py +198 -0
app.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import voyageai
|
7 |
+
import time
|
8 |
+
import sys
|
9 |
+
from concurrent.futures import ThreadPoolExecutor
|
10 |
+
|
11 |
+
# Set Voyage AI API key directly (using the free version key from your code)
|
12 |
+
voyageai.api_key = "pa-DvIuCX_5TrCyxS6y74sUYpyWWGd4gN0Kf52y642y6k0"
|
13 |
+
|
14 |
+
# Force unbuffered output
|
15 |
+
os.environ['PYTHONUNBUFFERED'] = '1'
|
16 |
+
|
17 |
+
# ===== Embedding Generation Functions =====
|
18 |
+
def get_embeddings_batch(texts, model="voyage-3-large", batch_size=100):
|
19 |
+
"""Get embeddings for a list of texts in batches"""
|
20 |
+
all_embeddings = []
|
21 |
+
total_texts = len(texts)
|
22 |
+
|
23 |
+
# Pre-process all texts to replace newlines
|
24 |
+
texts = [text.replace("\n", " ") for text in texts]
|
25 |
+
|
26 |
+
for i in range(0, len(texts), batch_size):
|
27 |
+
batch = texts[i:i+batch_size]
|
28 |
+
|
29 |
+
try:
|
30 |
+
response = voyageai.Embedding.create(input=batch, model=model)
|
31 |
+
batch_embeddings = [item['embedding'] for item in response['data']]
|
32 |
+
all_embeddings.extend(batch_embeddings)
|
33 |
+
|
34 |
+
# Sleep briefly to avoid rate limits
|
35 |
+
if i + batch_size < len(texts):
|
36 |
+
time.sleep(0.5)
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error in batch {i//batch_size + 1}: {e}")
|
40 |
+
# Add empty embeddings for failed batch
|
41 |
+
all_embeddings.extend([None] * len(batch))
|
42 |
+
|
43 |
+
return all_embeddings
|
44 |
+
|
45 |
+
def create_product_embeddings_voyageai(products, batch_size=100):
|
46 |
+
"""Create embeddings for products using batch processing with deduplication"""
|
47 |
+
# De-duplication step
|
48 |
+
unique_products = []
|
49 |
+
product_to_index = {}
|
50 |
+
index_map = {} # Maps original index to index in unique_products
|
51 |
+
|
52 |
+
for i, product in enumerate(products):
|
53 |
+
if product in product_to_index:
|
54 |
+
# Product already seen, just store the mapping
|
55 |
+
index_map[i] = product_to_index[product]
|
56 |
+
else:
|
57 |
+
# New unique product
|
58 |
+
product_to_index[product] = len(unique_products)
|
59 |
+
index_map[i] = len(unique_products)
|
60 |
+
unique_products.append(product)
|
61 |
+
|
62 |
+
print(f"Found {len(unique_products)} unique products out of {len(products)} total")
|
63 |
+
|
64 |
+
if len(unique_products) == 0:
|
65 |
+
return {}
|
66 |
+
|
67 |
+
# Process only unique products
|
68 |
+
print(f"Processing {len(unique_products)} unique products")
|
69 |
+
|
70 |
+
# Get embeddings for unique products
|
71 |
+
unique_embeddings = get_embeddings_batch(unique_products, batch_size=batch_size)
|
72 |
+
|
73 |
+
# Map embeddings back to all products
|
74 |
+
all_products_dict = {}
|
75 |
+
for i, product in enumerate(products):
|
76 |
+
unique_idx = index_map[i]
|
77 |
+
if unique_idx < len(unique_embeddings) and unique_embeddings[unique_idx] is not None:
|
78 |
+
all_products_dict[product] = unique_embeddings[unique_idx]
|
79 |
+
|
80 |
+
print(f"Created embeddings for {len(all_products_dict)} products")
|
81 |
+
|
82 |
+
return all_products_dict
|
83 |
+
|
84 |
+
# ===== Similarity Computation Functions =====
|
85 |
+
def compute_similarities(ingredients_dict, products_dict):
|
86 |
+
"""Compute similarities between all products and ingredients using NumPy"""
|
87 |
+
# Filter valid ingredients (with non-None embeddings)
|
88 |
+
ingredient_names = []
|
89 |
+
ingredient_embeddings_list = []
|
90 |
+
for ing, emb in ingredients_dict.items():
|
91 |
+
if emb is not None:
|
92 |
+
ingredient_names.append(ing)
|
93 |
+
ingredient_embeddings_list.append(emb)
|
94 |
+
|
95 |
+
# Convert ingredient embeddings to numpy array
|
96 |
+
ingredient_embeddings = np.array(ingredient_embeddings_list, dtype=np.float32)
|
97 |
+
|
98 |
+
# Normalize ingredient embeddings for cosine similarity
|
99 |
+
ingredient_norms = np.linalg.norm(ingredient_embeddings, axis=1, keepdims=True)
|
100 |
+
normalized_ingredients = ingredient_embeddings / ingredient_norms
|
101 |
+
|
102 |
+
# Process all products
|
103 |
+
all_similarities = {}
|
104 |
+
valid_products = []
|
105 |
+
valid_embeddings = []
|
106 |
+
|
107 |
+
for product, embedding in products_dict.items():
|
108 |
+
if embedding is not None:
|
109 |
+
valid_products.append(product)
|
110 |
+
valid_embeddings.append(embedding)
|
111 |
+
|
112 |
+
if not valid_products:
|
113 |
+
return {}
|
114 |
+
|
115 |
+
# Convert product embeddings to numpy array
|
116 |
+
product_embeddings = np.array(valid_embeddings, dtype=np.float32)
|
117 |
+
|
118 |
+
# Normalize product embeddings
|
119 |
+
product_norms = np.linalg.norm(product_embeddings, axis=1, keepdims=True)
|
120 |
+
normalized_products = product_embeddings / product_norms
|
121 |
+
|
122 |
+
# Compute all similarities at once using matrix multiplication
|
123 |
+
# (dot product of normalized vectors = cosine similarity)
|
124 |
+
similarity_matrix = np.dot(normalized_products, normalized_ingredients.T)
|
125 |
+
|
126 |
+
# Process and store results
|
127 |
+
for p_idx, product in enumerate(valid_products):
|
128 |
+
product_similarities = [(ingredient_names[i_idx], float(similarity_matrix[p_idx, i_idx]))
|
129 |
+
for i_idx in range(len(ingredient_names))]
|
130 |
+
|
131 |
+
# Sort by similarity score (descending)
|
132 |
+
product_similarities.sort(key=lambda x: x[1], reverse=True)
|
133 |
+
all_similarities[product] = product_similarities
|
134 |
+
|
135 |
+
return all_similarities
|
136 |
+
|
137 |
+
# ===== Main Application Functions =====
|
138 |
+
def load_embeddings(embeddings_path):
|
139 |
+
"""Load ingredient embeddings from pickle file"""
|
140 |
+
print(f"Loading ingredient embeddings from {embeddings_path}")
|
141 |
+
with open(embeddings_path, "rb") as f:
|
142 |
+
ingredients_embeddings = pickle.load(f)
|
143 |
+
print(f"Loaded {len(ingredients_embeddings)} ingredient embeddings")
|
144 |
+
return ingredients_embeddings
|
145 |
+
|
146 |
+
def categorize_products_from_text(product_text, embeddings, progress=gr.Progress(), top_n=5, confidence_threshold=0.5):
|
147 |
+
"""Categorize products from text input (one product per line)"""
|
148 |
+
# Parse input text to get product names
|
149 |
+
product_names = [line.strip() for line in product_text.split("\n") if line.strip()]
|
150 |
+
|
151 |
+
if not product_names:
|
152 |
+
return "No product names provided."
|
153 |
+
|
154 |
+
progress(0, desc="Starting...")
|
155 |
+
|
156 |
+
# Create product embeddings
|
157 |
+
progress(0.1, desc="Generating product embeddings...")
|
158 |
+
products_embeddings = create_product_embeddings_voyageai(product_names)
|
159 |
+
|
160 |
+
# Compute similarities
|
161 |
+
progress(0.6, desc="Computing similarities...")
|
162 |
+
all_similarities = compute_similarities(embeddings, products_embeddings)
|
163 |
+
|
164 |
+
# Format results
|
165 |
+
progress(0.9, desc="Formatting results...")
|
166 |
+
results = {}
|
167 |
+
for product, similarities in all_similarities.items():
|
168 |
+
# Filter by confidence threshold and take top N
|
169 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
170 |
+
if score >= confidence_threshold]
|
171 |
+
top_similarities = filtered_similarities[:top_n]
|
172 |
+
|
173 |
+
results[product] = top_similarities
|
174 |
+
|
175 |
+
# Format as readable text
|
176 |
+
output_text = ""
|
177 |
+
for product, categories in results.items():
|
178 |
+
output_text += f"Product: {product}\n"
|
179 |
+
if categories:
|
180 |
+
for i, (category, score) in enumerate(categories, 1):
|
181 |
+
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
182 |
+
else:
|
183 |
+
output_text += " No matching categories found.\n"
|
184 |
+
output_text += "\n"
|
185 |
+
|
186 |
+
progress(1.0, desc="Done!")
|
187 |
+
return output_text
|
188 |
+
|
189 |
+
def categorize_products_from_file(file, embeddings, progress=gr.Progress(), top_n=5, confidence_threshold=0.5):
|
190 |
+
"""Categorize products from a JSON file"""
|
191 |
+
progress(0.1, desc="Reading file...")
|
192 |
+
|
193 |
+
try:
|
194 |
+
with open(file.name, 'r') as f:
|
195 |
+
try:
|
196 |
+
products_data = json.load(f)
|
197 |
+
if isinstance(products_data, list):
|
198 |
+
# Extract product names if it's a list of objects with 'name' field
|
199 |
+
if all(isinstance(item, dict) for item in products_data):
|
200 |
+
product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)]
|
201 |
+
else:
|
202 |
+
# If it's just a list of strings
|
203 |
+
product_names = [str(item) for item in products_data if item]
|
204 |
+
else:
|
205 |
+
# If it's just a list of product names
|
206 |
+
product_names = []
|
207 |
+
except json.JSONDecodeError:
|
208 |
+
# If not JSON, try reading as text file with one product per line
|
209 |
+
f.seek(0)
|
210 |
+
product_names = [line.strip() for line in f.readlines() if line.strip()]
|
211 |
+
except Exception as e:
|
212 |
+
return f"Error reading file: {str(e)}"
|
213 |
+
|
214 |
+
if not product_names:
|
215 |
+
return "No product names found in the file."
|
216 |
+
|
217 |
+
# Create product embeddings
|
218 |
+
progress(0.2, desc="Generating product embeddings...")
|
219 |
+
products_embeddings = create_product_embeddings_voyageai(product_names)
|
220 |
+
|
221 |
+
# Compute similarities
|
222 |
+
progress(0.7, desc="Computing similarities...")
|
223 |
+
all_similarities = compute_similarities(embeddings, products_embeddings)
|
224 |
+
|
225 |
+
# Format results
|
226 |
+
progress(0.9, desc="Formatting results...")
|
227 |
+
output_text = f"Found {len(product_names)} products in file.\n\n"
|
228 |
+
|
229 |
+
for product, similarities in all_similarities.items():
|
230 |
+
# Filter by confidence threshold and take top N
|
231 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
232 |
+
if score >= confidence_threshold]
|
233 |
+
top_similarities = filtered_similarities[:top_n]
|
234 |
+
|
235 |
+
output_text += f"Product: {product}\n"
|
236 |
+
if top_similarities:
|
237 |
+
for i, (category, score) in enumerate(top_similarities, 1):
|
238 |
+
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
239 |
+
else:
|
240 |
+
output_text += " No matching categories found.\n"
|
241 |
+
output_text += "\n"
|
242 |
+
|
243 |
+
progress(1.0, desc="Done!")
|
244 |
+
return output_text
|
245 |
+
|
246 |
+
# ===== Gradio Interface Setup =====
|
247 |
+
def create_interface(embeddings_path="ingredient_embeddings_voyageai.pkl"):
|
248 |
+
# Load embeddings once at startup
|
249 |
+
embeddings = load_embeddings(embeddings_path)
|
250 |
+
|
251 |
+
# Text input interface
|
252 |
+
with gr.Blocks() as demo:
|
253 |
+
gr.Markdown("# Product Categorization Tool")
|
254 |
+
gr.Markdown("This tool uses AI to categorize products based on their similarity to known ingredients.")
|
255 |
+
|
256 |
+
with gr.Tabs():
|
257 |
+
with gr.TabItem("Text Input"):
|
258 |
+
with gr.Row():
|
259 |
+
with gr.Column():
|
260 |
+
text_input = gr.Textbox(
|
261 |
+
lines=10,
|
262 |
+
placeholder="Enter product names, one per line",
|
263 |
+
label="Product Names"
|
264 |
+
)
|
265 |
+
top_n = gr.Slider(
|
266 |
+
minimum=1,
|
267 |
+
maximum=10,
|
268 |
+
value=5,
|
269 |
+
step=1,
|
270 |
+
label="Number of Top Categories"
|
271 |
+
)
|
272 |
+
confidence = gr.Slider(
|
273 |
+
minimum=0.1,
|
274 |
+
maximum=0.9,
|
275 |
+
value=0.5,
|
276 |
+
step=0.05,
|
277 |
+
label="Confidence Threshold"
|
278 |
+
)
|
279 |
+
submit_button = gr.Button("Categorize Products")
|
280 |
+
|
281 |
+
with gr.Column():
|
282 |
+
text_output = gr.Textbox(label="Categorization Results", lines=20)
|
283 |
+
|
284 |
+
submit_button.click(
|
285 |
+
fn=lambda text, top_n, conf, prog: categorize_products_from_text(
|
286 |
+
text, embeddings, prog, top_n, conf
|
287 |
+
),
|
288 |
+
inputs=[text_input, top_n, confidence],
|
289 |
+
outputs=text_output
|
290 |
+
)
|
291 |
+
|
292 |
+
with gr.TabItem("File Upload"):
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
file_input = gr.File(label="Upload JSON file with products")
|
296 |
+
file_top_n = gr.Slider(
|
297 |
+
minimum=1,
|
298 |
+
maximum=10,
|
299 |
+
value=5,
|
300 |
+
step=1,
|
301 |
+
label="Number of Top Categories"
|
302 |
+
)
|
303 |
+
file_confidence = gr.Slider(
|
304 |
+
minimum=0.1,
|
305 |
+
maximum=0.9,
|
306 |
+
value=0.5,
|
307 |
+
step=0.05,
|
308 |
+
label="Confidence Threshold"
|
309 |
+
)
|
310 |
+
file_button = gr.Button("Process File")
|
311 |
+
|
312 |
+
with gr.Column():
|
313 |
+
file_output = gr.Textbox(label="Categorization Results", lines=20)
|
314 |
+
|
315 |
+
file_button.click(
|
316 |
+
fn=lambda file, top_n, conf, prog: categorize_products_from_file(
|
317 |
+
file, embeddings, prog, top_n, conf
|
318 |
+
),
|
319 |
+
inputs=[file_input, file_top_n, file_confidence],
|
320 |
+
outputs=file_output
|
321 |
+
)
|
322 |
+
|
323 |
+
gr.Markdown("### Example Input")
|
324 |
+
gr.Markdown("Try entering product names like:\n- Tomato Sauce\n- Apple Pie\n- Greek Yogurt\n- Chocolate Chip Cookies")
|
325 |
+
|
326 |
+
return demo
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
import argparse
|
330 |
+
|
331 |
+
parser = argparse.ArgumentParser(description='Run the Product Categorization web app')
|
332 |
+
parser.add_argument('--embeddings', default='ingredient_embeddings_voyageai.pkl',
|
333 |
+
help='Path to the ingredient embeddings pickle file')
|
334 |
+
parser.add_argument('--share', action='store_true', help='Create a public link for sharing')
|
335 |
+
|
336 |
+
args = parser.parse_args()
|
337 |
+
|
338 |
+
# Create and launch the interface
|
339 |
+
demo = create_interface(args.embeddings)
|
340 |
+
demo.launch(share=args.share)
|
readme.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Product Categorization App - One-Click Solution
|
2 |
+
|
3 |
+
This is a turnkey solution for categorizing products based on their similarity to ingredients using Voyage AI.
|
4 |
+
|
5 |
+
## Quick Start
|
6 |
+
|
7 |
+
1. Place your `ingredient_embeddings_voyageai.pkl` file in the same folder as this README
|
8 |
+
2. Run the application:
|
9 |
+
|
10 |
+
```bash
|
11 |
+
bash run_app.sh
|
12 |
+
```
|
13 |
+
|
14 |
+
3. That's it! A browser window will open with the app, and a public URL will be created for sharing
|
15 |
+
|
16 |
+
## What You Can Do
|
17 |
+
|
18 |
+
- **Text Input:** Enter product names one per line
|
19 |
+
- **File Upload:** Upload a JSON file with product data
|
20 |
+
- Adjust the number of categories and confidence threshold
|
21 |
+
- View the categorization results with confidence scores
|
22 |
+
|
23 |
+
## Hosting on Hugging Face Spaces
|
24 |
+
|
25 |
+
For permanent, free hosting on Gradio:
|
26 |
+
|
27 |
+
1. Create a free account on [Hugging Face](https://huggingface.co/)
|
28 |
+
2. Go to [Hugging Face Spaces](https://huggingface.co/spaces)
|
29 |
+
3. Click "Create a Space"
|
30 |
+
4. Select "Gradio" as the SDK
|
31 |
+
5. Upload all files (including your embeddings file) to the space
|
32 |
+
6. Your app will be automatically deployed!
|
33 |
+
|
34 |
+
## Files Included
|
35 |
+
|
36 |
+
- `app.py`: The main application code
|
37 |
+
- `requirements.txt`: Required Python packages
|
38 |
+
- `run_app.sh`: One-click deployment script
|
39 |
+
|
40 |
+
## Requirements
|
41 |
+
|
42 |
+
- Python 3.7+
|
43 |
+
- Internet connection (for Voyage AI API)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
voyageai==0.2.3
|
2 |
+
numpy==1.24.3
|
3 |
+
gradio==4.12.0
|
run_app.sh
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Install required packages
|
4 |
+
pip install -r requirements.txt
|
5 |
+
|
6 |
+
# Check if embeddings file exists
|
7 |
+
if [ -f "ingredient_embeddings_voyageai.pkl" ]; then
|
8 |
+
# Run with local embeddings file
|
9 |
+
python app.py --share
|
10 |
+
else
|
11 |
+
echo "ERROR: ingredient_embeddings_voyageai.pkl file not found!"
|
12 |
+
echo "Please place the embeddings file in the same directory as this script."
|
13 |
+
exit 1
|
14 |
+
fi
|
spaces.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import voyageai
|
7 |
+
import time
|
8 |
+
import sys
|
9 |
+
|
10 |
+
# Set Voyage AI API key directly
|
11 |
+
voyageai.api_key = "pa-DvIuCX_5TrCyxS6y74sUYpyWWGd4gN0Kf52y642y6k0"
|
12 |
+
|
13 |
+
# Import all necessary functions from the main app
|
14 |
+
from app import create_product_embeddings_voyageai, get_embeddings_batch, compute_similarities
|
15 |
+
|
16 |
+
# Path to the embeddings file for Hugging Face Spaces
|
17 |
+
EMBEDDINGS_PATH = "ingredient_embeddings_voyageai.pkl"
|
18 |
+
|
19 |
+
# Load the embeddings
|
20 |
+
print(f"Loading ingredient embeddings from {EMBEDDINGS_PATH}")
|
21 |
+
try:
|
22 |
+
with open(EMBEDDINGS_PATH, "rb") as f:
|
23 |
+
embeddings = pickle.load(f)
|
24 |
+
print(f"Successfully loaded {len(embeddings)} ingredient embeddings")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"ERROR: Failed to load embeddings: {e}")
|
27 |
+
# Create an empty dict as fallback
|
28 |
+
embeddings = {}
|
29 |
+
|
30 |
+
# Define the categorization function for text input
|
31 |
+
def categorize_products_from_text(product_text, progress=gr.Progress(), top_n=5, confidence_threshold=0.5):
|
32 |
+
"""Categorize products from text input (one product per line)"""
|
33 |
+
# Parse input text to get product names
|
34 |
+
product_names = [line.strip() for line in product_text.split("\n") if line.strip()]
|
35 |
+
|
36 |
+
if not product_names:
|
37 |
+
return "No product names provided."
|
38 |
+
|
39 |
+
progress(0.1, desc="Generating product embeddings...")
|
40 |
+
|
41 |
+
# Create product embeddings
|
42 |
+
products_embeddings = create_product_embeddings_voyageai(product_names)
|
43 |
+
|
44 |
+
# Compute similarities
|
45 |
+
progress(0.6, desc="Computing similarities...")
|
46 |
+
all_similarities = compute_similarities(embeddings, products_embeddings)
|
47 |
+
|
48 |
+
# Format results
|
49 |
+
progress(0.9, desc="Formatting results...")
|
50 |
+
output_text = ""
|
51 |
+
for product, similarities in all_similarities.items():
|
52 |
+
# Filter by confidence threshold and take top N
|
53 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
54 |
+
if score >= confidence_threshold]
|
55 |
+
top_similarities = filtered_similarities[:top_n]
|
56 |
+
|
57 |
+
output_text += f"Product: {product}\n"
|
58 |
+
if top_similarities:
|
59 |
+
for i, (category, score) in enumerate(top_similarities, 1):
|
60 |
+
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
61 |
+
else:
|
62 |
+
output_text += " No matching categories found.\n"
|
63 |
+
output_text += "\n"
|
64 |
+
|
65 |
+
progress(1.0, desc="Done!")
|
66 |
+
return output_text
|
67 |
+
|
68 |
+
# Define the categorization function for file input
|
69 |
+
def categorize_products_from_file(file, progress=gr.Progress(), top_n=5, confidence_threshold=0.5):
|
70 |
+
"""Categorize products from a JSON file"""
|
71 |
+
progress(0.1, desc="Reading file...")
|
72 |
+
|
73 |
+
try:
|
74 |
+
with open(file.name, 'r') as f:
|
75 |
+
try:
|
76 |
+
products_data = json.load(f)
|
77 |
+
if isinstance(products_data, list):
|
78 |
+
# Extract product names if it's a list of objects with 'name' field
|
79 |
+
if all(isinstance(item, dict) for item in products_data):
|
80 |
+
product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)]
|
81 |
+
else:
|
82 |
+
# If it's just a list of strings
|
83 |
+
product_names = [str(item) for item in products_data if item]
|
84 |
+
else:
|
85 |
+
# If it's just a list of product names
|
86 |
+
product_names = []
|
87 |
+
except json.JSONDecodeError:
|
88 |
+
# If not JSON, try reading as text file with one product per line
|
89 |
+
f.seek(0)
|
90 |
+
product_names = [line.strip() for line in f.readlines() if line.strip()]
|
91 |
+
except Exception as e:
|
92 |
+
return f"Error reading file: {str(e)}"
|
93 |
+
|
94 |
+
if not product_names:
|
95 |
+
return "No product names found in the file."
|
96 |
+
|
97 |
+
# Create product embeddings
|
98 |
+
progress(0.2, desc="Generating product embeddings...")
|
99 |
+
products_embeddings = create_product_embeddings_voyageai(product_names)
|
100 |
+
|
101 |
+
# Compute similarities
|
102 |
+
progress(0.7, desc="Computing similarities...")
|
103 |
+
all_similarities = compute_similarities(embeddings, products_embeddings)
|
104 |
+
|
105 |
+
# Format results
|
106 |
+
progress(0.9, desc="Formatting results...")
|
107 |
+
output_text = f"Found {len(product_names)} products in file.\n\n"
|
108 |
+
|
109 |
+
for product, similarities in all_similarities.items():
|
110 |
+
# Filter by confidence threshold and take top N
|
111 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
112 |
+
if score >= confidence_threshold]
|
113 |
+
top_similarities = filtered_similarities[:top_n]
|
114 |
+
|
115 |
+
output_text += f"Product: {product}\n"
|
116 |
+
if top_similarities:
|
117 |
+
for i, (category, score) in enumerate(top_similarities, 1):
|
118 |
+
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
119 |
+
else:
|
120 |
+
output_text += " No matching categories found.\n"
|
121 |
+
output_text += "\n"
|
122 |
+
|
123 |
+
progress(1.0, desc="Done!")
|
124 |
+
return output_text
|
125 |
+
|
126 |
+
# Create the Gradio interface
|
127 |
+
with gr.Blocks() as demo:
|
128 |
+
gr.Markdown("# Product Categorization Tool")
|
129 |
+
gr.Markdown("This tool uses AI to categorize products based on their similarity to known ingredients.")
|
130 |
+
|
131 |
+
with gr.Tabs():
|
132 |
+
with gr.TabItem("Text Input"):
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column():
|
135 |
+
text_input = gr.Textbox(
|
136 |
+
lines=10,
|
137 |
+
placeholder="Enter product names, one per line",
|
138 |
+
label="Product Names"
|
139 |
+
)
|
140 |
+
top_n = gr.Slider(
|
141 |
+
minimum=1,
|
142 |
+
maximum=10,
|
143 |
+
value=5,
|
144 |
+
step=1,
|
145 |
+
label="Number of Top Categories"
|
146 |
+
)
|
147 |
+
confidence = gr.Slider(
|
148 |
+
minimum=0.1,
|
149 |
+
maximum=0.9,
|
150 |
+
value=0.5,
|
151 |
+
step=0.05,
|
152 |
+
label="Confidence Threshold"
|
153 |
+
)
|
154 |
+
submit_button = gr.Button("Categorize Products")
|
155 |
+
|
156 |
+
with gr.Column():
|
157 |
+
text_output = gr.Textbox(label="Categorization Results", lines=20)
|
158 |
+
|
159 |
+
submit_button.click(
|
160 |
+
fn=categorize_products_from_text,
|
161 |
+
inputs=[text_input, top_n, confidence],
|
162 |
+
outputs=text_output
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.TabItem("File Upload"):
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
file_input = gr.File(label="Upload JSON file with products")
|
169 |
+
file_top_n = gr.Slider(
|
170 |
+
minimum=1,
|
171 |
+
maximum=10,
|
172 |
+
value=5,
|
173 |
+
step=1,
|
174 |
+
label="Number of Top Categories"
|
175 |
+
)
|
176 |
+
file_confidence = gr.Slider(
|
177 |
+
minimum=0.1,
|
178 |
+
maximum=0.9,
|
179 |
+
value=0.5,
|
180 |
+
step=0.05,
|
181 |
+
label="Confidence Threshold"
|
182 |
+
)
|
183 |
+
file_button = gr.Button("Process File")
|
184 |
+
|
185 |
+
with gr.Column():
|
186 |
+
file_output = gr.Textbox(label="Categorization Results", lines=20)
|
187 |
+
|
188 |
+
file_button.click(
|
189 |
+
fn=categorize_products_from_file,
|
190 |
+
inputs=[file_input, file_top_n, file_confidence],
|
191 |
+
outputs=file_output
|
192 |
+
)
|
193 |
+
|
194 |
+
gr.Markdown("### Example Input")
|
195 |
+
gr.Markdown("Try entering product names like:\n- Tomato Sauce\n- Apple Pie\n- Greek Yogurt\n- Chocolate Chip Cookies")
|
196 |
+
|
197 |
+
# Launch the demo (for Hugging Face Spaces)
|
198 |
+
demo.launch()
|