Spaces:
Sleeping
Sleeping
compare to chicory-ui
Browse files
ui.py
CHANGED
@@ -2,274 +2,80 @@ import gradio as gr
|
|
2 |
from utils import SafeProgress, format_categories_html
|
3 |
from embeddings import create_product_embeddings
|
4 |
from similarity import compute_similarities
|
5 |
-
from chicory_api import call_chicory_parser
|
6 |
|
7 |
# Global variable for embeddings
|
8 |
embeddings = {}
|
9 |
|
10 |
-
def
|
11 |
-
"""Categorize products from text input
|
12 |
-
# Create a safe progress tracker
|
13 |
progress_tracker = SafeProgress(progress)
|
14 |
progress_tracker(0, desc="Starting...")
|
15 |
-
|
16 |
-
# Parse input
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
if not product_names:
|
20 |
-
return "No product names provided
|
21 |
-
|
22 |
-
# Create
|
23 |
-
progress_tracker(0.
|
24 |
products_embeddings = create_product_embeddings(product_names)
|
25 |
-
|
26 |
# Call Chicory Parser API
|
27 |
progress_tracker(0.5, desc="Calling Chicory Parser API...")
|
28 |
chicory_results = call_chicory_parser(product_names)
|
29 |
-
|
30 |
# Compute similarities
|
31 |
-
progress_tracker(0.
|
32 |
all_similarities = compute_similarities(embeddings, products_embeddings)
|
33 |
-
|
34 |
# Format results
|
35 |
progress_tracker(0.9, desc="Formatting results...")
|
36 |
output_html = "<div style='font-family: Arial, sans-serif;'>"
|
37 |
-
|
38 |
for product, similarities in all_similarities.items():
|
39 |
-
|
40 |
-
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
41 |
-
if score >= confidence_threshold]
|
42 |
top_similarities = filtered_similarities[:top_n]
|
43 |
-
|
44 |
output_html += format_categories_html(product, top_similarities, chicory_result=chicory_results.get(product))
|
45 |
output_html += "<hr style='margin: 15px 0; border: 0; border-top: 1px solid #eee;'>"
|
46 |
-
|
47 |
output_html += "</div>"
|
48 |
-
|
49 |
if not all_similarities:
|
50 |
output_html = "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>No results found. Please check your input or try different products.</div>"
|
51 |
-
|
52 |
-
progress_tracker(1.0, desc="Done!")
|
53 |
-
return output_html
|
54 |
|
55 |
-
def categorize_products_from_file(file, top_n=5, confidence_threshold=0.5, progress=None):
|
56 |
-
"""Categorize products from a JSON or text file"""
|
57 |
-
from utils import parse_product_file
|
58 |
-
|
59 |
-
# Create a safe progress tracker
|
60 |
-
progress_tracker = SafeProgress(progress)
|
61 |
-
progress_tracker(0.1, desc="Reading file...")
|
62 |
-
|
63 |
-
try:
|
64 |
-
product_names = parse_product_file(file.name)
|
65 |
-
except Exception as e:
|
66 |
-
return f"<div style='color: #d32f2f; font-weight: bold;'>Error: {str(e)}</div>"
|
67 |
-
|
68 |
-
if not product_names:
|
69 |
-
return "<div style='color: #d32f2f;'>No product names found in the file.</div>"
|
70 |
-
|
71 |
-
# Create product embeddings
|
72 |
-
progress_tracker(0.2, desc="Generating product embeddings...")
|
73 |
-
products_embeddings = create_product_embeddings(product_names)
|
74 |
-
|
75 |
-
# Call Chicory Parser API
|
76 |
-
progress_tracker(0.5, desc="Calling Chicory Parser API...")
|
77 |
-
chicory_results = call_chicory_parser(product_names)
|
78 |
-
|
79 |
-
# Compute similarities
|
80 |
-
progress_tracker(0.7, desc="Computing similarities...")
|
81 |
-
all_similarities = compute_similarities(embeddings, products_embeddings)
|
82 |
-
|
83 |
-
# Format results
|
84 |
-
progress_tracker(0.9, desc="Formatting results...")
|
85 |
-
output_html = f"<div style='font-family: Arial, sans-serif;'>"
|
86 |
-
output_html += f"<div style='margin-bottom: 20px; padding: 10px; background-color: #e8f5e9; border-radius: 5px;'>"
|
87 |
-
output_html += f"Found <b>{len(product_names)}</b> products in file. Showing results with confidence ≥ {confidence_threshold}."
|
88 |
-
output_html += "</div>"
|
89 |
-
|
90 |
-
for product, similarities in all_similarities.items():
|
91 |
-
# Filter by confidence threshold and take top N
|
92 |
-
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
93 |
-
if score >= confidence_threshold]
|
94 |
-
top_similarities = filtered_similarities[:top_n]
|
95 |
-
|
96 |
-
output_html += format_categories_html(product, top_similarities, chicory_result=chicory_results.get(product))
|
97 |
-
output_html += "<hr style='margin: 15px 0; border: 0; border-top: 1px solid #eee;'>"
|
98 |
-
|
99 |
-
output_html += "</div>"
|
100 |
-
|
101 |
progress_tracker(1.0, desc="Done!")
|
102 |
return output_html
|
103 |
|
104 |
def create_demo():
|
105 |
"""Create the Gradio interface"""
|
106 |
-
|
107 |
-
|
108 |
-
.container {
|
109 |
-
max-width: 1200px;
|
110 |
-
margin: auto;
|
111 |
-
padding: 0;
|
112 |
-
}
|
113 |
-
footer {display: none !important;}
|
114 |
-
.header {
|
115 |
-
background-color: #0d47a1;
|
116 |
-
padding: 15px 20px;
|
117 |
-
border-radius: 10px;
|
118 |
-
color: white;
|
119 |
-
margin-bottom: 20px;
|
120 |
-
display: flex;
|
121 |
-
align-items: center;
|
122 |
-
}
|
123 |
-
.header svg {
|
124 |
-
margin-right: 10px;
|
125 |
-
height: 30px;
|
126 |
-
width: 30px;
|
127 |
-
}
|
128 |
-
.header h1 {
|
129 |
-
margin: 0;
|
130 |
-
font-size: 24px;
|
131 |
-
}
|
132 |
-
.description {
|
133 |
-
margin-bottom: 20px;
|
134 |
-
padding: 15px;
|
135 |
-
background-color: #f5f5f5;
|
136 |
-
border-radius: 5px;
|
137 |
-
}
|
138 |
-
"""
|
139 |
-
|
140 |
-
# Custom theme
|
141 |
-
theme = gr.themes.Soft(
|
142 |
-
primary_hue="blue",
|
143 |
-
secondary_hue="indigo",
|
144 |
-
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui"]
|
145 |
-
).set(
|
146 |
-
button_primary_background_fill="*primary_500",
|
147 |
-
button_primary_background_fill_hover="*primary_600",
|
148 |
-
button_secondary_background_fill="*neutral_200",
|
149 |
-
block_title_text_size="lg",
|
150 |
-
block_label_text_size="md"
|
151 |
-
)
|
152 |
|
153 |
-
with gr.Blocks(css=css, theme=theme) as demo:
|
154 |
-
# Header with icon
|
155 |
-
gr.HTML("""
|
156 |
-
<div class="header">
|
157 |
-
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="white">
|
158 |
-
<path d="M12 2L2 7l10 5 10-5-10-5zM2 17l10 5 10-5M2 12l10 5 10-5"></path>
|
159 |
-
</svg>
|
160 |
-
<h1>Product Categorization Tool</h1>
|
161 |
-
</div>
|
162 |
-
<div class="description">
|
163 |
-
This tool analyzes products and finds the most similar ingredients using AI embeddings.
|
164 |
-
Just enter product names or upload a file to get started.
|
165 |
-
</div>
|
166 |
-
""")
|
167 |
-
|
168 |
with gr.Tabs():
|
169 |
with gr.TabItem("Text Input"):
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
"Vanilla Ice Cream\nPizza Dough\nStrawberry Jam\nGrilled Salmon"
|
176 |
-
]
|
177 |
-
|
178 |
-
text_input = gr.Textbox(
|
179 |
-
lines=10,
|
180 |
-
placeholder="Enter product names, one per line",
|
181 |
-
label="Product Names"
|
182 |
-
)
|
183 |
-
|
184 |
-
gr.Examples(
|
185 |
-
examples=example_products,
|
186 |
-
inputs=text_input,
|
187 |
-
label="Example Product Sets"
|
188 |
-
)
|
189 |
-
|
190 |
-
with gr.Row():
|
191 |
-
with gr.Column(scale=1):
|
192 |
-
top_n = gr.Slider(
|
193 |
-
minimum=1,
|
194 |
-
maximum=10,
|
195 |
-
value=5,
|
196 |
-
step=1,
|
197 |
-
label="Number of Top Categories"
|
198 |
-
)
|
199 |
-
with gr.Column(scale=1):
|
200 |
-
confidence = gr.Slider(
|
201 |
-
minimum=0.1,
|
202 |
-
maximum=0.9,
|
203 |
-
value=0.5,
|
204 |
-
step=0.05,
|
205 |
-
label="Confidence Threshold"
|
206 |
-
)
|
207 |
-
|
208 |
-
submit_button = gr.Button("Categorize Products", variant="primary")
|
209 |
-
|
210 |
-
with gr.Column(scale=3):
|
211 |
-
text_output = gr.HTML(label="Categorization Results",
|
212 |
-
value="<div style='height: 450px; display: flex; justify-content: center; align-items: center; color: #666;'>Results will appear here</div>")
|
213 |
-
|
214 |
-
submit_button.click(
|
215 |
-
fn=categorize_products_from_text,
|
216 |
-
inputs=[text_input, top_n, confidence],
|
217 |
outputs=text_output
|
218 |
)
|
219 |
-
|
220 |
with gr.TabItem("File Upload"):
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
-
|
228 |
-
with gr.Accordion("Help", open=False):
|
229 |
-
gr.Markdown("""
|
230 |
-
- JSON files should contain either:
|
231 |
-
- A list of objects with a 'name' field for each product
|
232 |
-
- A simple array of product name strings
|
233 |
-
- Text files should have one product name per line
|
234 |
-
""")
|
235 |
-
|
236 |
-
with gr.Row():
|
237 |
-
with gr.Column(scale=1):
|
238 |
-
file_top_n = gr.Slider(
|
239 |
-
minimum=1,
|
240 |
-
maximum=10,
|
241 |
-
value=5,
|
242 |
-
step=1,
|
243 |
-
label="Number of Top Categories"
|
244 |
-
)
|
245 |
-
with gr.Column(scale=1):
|
246 |
-
file_confidence = gr.Slider(
|
247 |
-
minimum=0.1,
|
248 |
-
maximum=0.9,
|
249 |
-
value=0.5,
|
250 |
-
step=0.05,
|
251 |
-
label="Confidence Threshold"
|
252 |
-
)
|
253 |
-
|
254 |
-
file_button = gr.Button("Process File", variant="primary")
|
255 |
-
|
256 |
-
with gr.Column(scale=3):
|
257 |
-
file_output = gr.HTML(
|
258 |
-
label="Categorization Results",
|
259 |
-
value="<div style='height: 450px; display: flex; justify-content: center; align-items: center; color: #666;'>Upload a file to see results</div>"
|
260 |
-
)
|
261 |
-
|
262 |
-
file_button.click(
|
263 |
-
fn=categorize_products_from_file,
|
264 |
-
inputs=[file_input, file_top_n, file_confidence],
|
265 |
outputs=file_output
|
266 |
)
|
267 |
-
|
268 |
-
|
269 |
-
gr.HTML("""
|
270 |
-
<div style="margin-top: 20px; text-align: center; color: #666;">
|
271 |
-
Powered by Voyage AI embeddings • Built with Gradio
|
272 |
-
</div>
|
273 |
-
""")
|
274 |
-
|
275 |
return demo
|
|
|
2 |
from utils import SafeProgress, format_categories_html
|
3 |
from embeddings import create_product_embeddings
|
4 |
from similarity import compute_similarities
|
5 |
+
from chicory_api import call_chicory_parser
|
6 |
|
7 |
# Global variable for embeddings
|
8 |
embeddings = {}
|
9 |
|
10 |
+
def categorize_products(product_input, is_file=False, top_n=5, confidence_threshold=0.5, progress=None):
|
11 |
+
"""Categorize products from text input or file"""
|
|
|
12 |
progress_tracker = SafeProgress(progress)
|
13 |
progress_tracker(0, desc="Starting...")
|
14 |
+
|
15 |
+
# Parse input
|
16 |
+
if is_file:
|
17 |
+
from utils import parse_product_file
|
18 |
+
try:
|
19 |
+
product_names = parse_product_file(product_input.name)
|
20 |
+
except Exception as e:
|
21 |
+
return f"<div style='color: #d32f2f; font-weight: bold;'>Error: {str(e)}</div>"
|
22 |
+
else:
|
23 |
+
product_names = [line.strip() for line in product_input.split("\n") if line.strip()]
|
24 |
+
|
25 |
if not product_names:
|
26 |
+
return "<div style='color: #d32f2f;'>No product names provided.</div>"
|
27 |
+
|
28 |
+
# Create embeddings
|
29 |
+
progress_tracker(0.2, desc="Generating product embeddings...")
|
30 |
products_embeddings = create_product_embeddings(product_names)
|
31 |
+
|
32 |
# Call Chicory Parser API
|
33 |
progress_tracker(0.5, desc="Calling Chicory Parser API...")
|
34 |
chicory_results = call_chicory_parser(product_names)
|
35 |
+
|
36 |
# Compute similarities
|
37 |
+
progress_tracker(0.7, desc="Computing similarities...")
|
38 |
all_similarities = compute_similarities(embeddings, products_embeddings)
|
39 |
+
|
40 |
# Format results
|
41 |
progress_tracker(0.9, desc="Formatting results...")
|
42 |
output_html = "<div style='font-family: Arial, sans-serif;'>"
|
|
|
43 |
for product, similarities in all_similarities.items():
|
44 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities if score >= confidence_threshold]
|
|
|
|
|
45 |
top_similarities = filtered_similarities[:top_n]
|
|
|
46 |
output_html += format_categories_html(product, top_similarities, chicory_result=chicory_results.get(product))
|
47 |
output_html += "<hr style='margin: 15px 0; border: 0; border-top: 1px solid #eee;'>"
|
|
|
48 |
output_html += "</div>"
|
49 |
+
|
50 |
if not all_similarities:
|
51 |
output_html = "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>No results found. Please check your input or try different products.</div>"
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
progress_tracker(1.0, desc="Done!")
|
54 |
return output_html
|
55 |
|
56 |
def create_demo():
|
57 |
"""Create the Gradio interface"""
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("# Product Categorization Tool\nAnalyze products and find the most similar ingredients using AI embeddings.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with gr.Tabs():
|
62 |
with gr.TabItem("Text Input"):
|
63 |
+
text_input = gr.Textbox(lines=10, placeholder="Enter product names, one per line", label="Product Names")
|
64 |
+
text_output = gr.HTML(label="Categorization Results")
|
65 |
+
gr.Button("Categorize").click(
|
66 |
+
fn=categorize_products,
|
67 |
+
inputs=[text_input, gr.State(False), gr.Slider(1, 10, 5), gr.Slider(0.1, 0.9, 0.5)],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
outputs=text_output
|
69 |
)
|
70 |
+
|
71 |
with gr.TabItem("File Upload"):
|
72 |
+
file_input = gr.File(label="Upload JSON or text file with products", file_types=[".json", ".txt"])
|
73 |
+
file_output = gr.HTML(label="Categorization Results")
|
74 |
+
gr.Button("Process File").click(
|
75 |
+
fn=categorize_products,
|
76 |
+
inputs=[file_input, gr.State(True), gr.Slider(1, 10, 5), gr.Slider(0.1, 0.9, 0.5)],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
outputs=file_output
|
78 |
)
|
79 |
+
|
80 |
+
gr.Markdown("Powered by Voyage AI embeddings • Built with Gradio")
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
return demo
|