esilver's picture
compare to chicory-ui
9633416
raw
history blame
7.56 kB
import os
import sys
import gradio as gr
from utils import load_embeddings
from embeddings import create_product_embeddings
from similarity import compute_similarities
from ui import categorize_products_from_text, categorize_products_from_file
# Path to the embeddings file
EMBEDDINGS_PATH = "ingredient_embeddings_voyageai.pkl"
# Check if embeddings file exists
if not os.path.exists(EMBEDDINGS_PATH):
print(f"Error: Embeddings file {EMBEDDINGS_PATH} not found!")
print(f"Please ensure the file exists at {os.path.abspath(EMBEDDINGS_PATH)}")
sys.exit(1)
# Load embeddings globally
try:
embeddings_data = load_embeddings(EMBEDDINGS_PATH)
# Make embeddings available to the UI functions
import ui
ui.embeddings = embeddings_data
except Exception as e:
print(f"Error loading embeddings: {e}")
sys.exit(1)
# Basic CSS theme
css = """
.container {
max-width: 1200px;
margin: auto;
padding: 0;
}
footer {display: none !important;}
.header {
background-color: #0d47a1;
padding: 15px 20px;
border-radius: 10px;
color: white;
margin-bottom: 20px;
display: flex;
align-items: center;
}
.header svg {
margin-right: 10px;
height: 30px;
width: 30px;
}
.header h1 {
margin: 0;
font-size: 24px;
}
.description {
margin-bottom: 20px;
padding: 15px;
background-color: #f5f5f5;
border-radius: 5px;
}
"""
# Custom theme
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui"]
).set(
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_secondary_background_fill="*neutral_200",
block_title_text_size="lg",
block_label_text_size="md"
)
# Create the Gradio interface directly in this file for Spaces
with gr.Blocks(css=css, theme=theme) as app:
# Header with icon
gr.HTML("""
<div class="header">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="white">
<path d="M12 2L2 7l10 5 10-5-10-5zM2 17l10 5 10-5M2 12l10 5 10-5"></path>
</svg>
<h1>Product Categorization Tool</h1>
</div>
<div class="description">
This tool analyzes products and finds the most similar ingredients using AI embeddings.
Just enter product names or upload a file to get started.
</div>
""")
with gr.Tabs():
with gr.TabItem("Text Input"):
with gr.Row():
with gr.Column(scale=2):
example_products = [
"Tomato Sauce\nApple Pie\nGreek Yogurt\nChocolate Chip Cookies",
"Banana Bread\nOrange Juice\nGrilled Chicken\nCaesar Salad",
"Vanilla Ice Cream\nPizza Dough\nStrawberry Jam\nGrilled Salmon"
]
text_input = gr.Textbox(
lines=10,
placeholder="Enter product names, one per line",
label="Product Names"
)
gr.Examples(
examples=example_products,
inputs=text_input,
label="Example Product Sets"
)
with gr.Row():
with gr.Column(scale=1):
top_n = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Top Categories"
)
with gr.Column(scale=1):
confidence = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.5,
step=0.05,
label="Confidence Threshold"
)
compare_chicory = gr.Checkbox(
label="Compare with Chicory Parser V3",
value=False,
info="When enabled, results will include comparisons with Chicory Parser V3 API"
)
submit_button = gr.Button("Categorize Products", variant="primary")
with gr.Column(scale=3):
text_output = gr.HTML(label="Categorization Results",
value="<div style='height: 450px; display: flex; justify-content: center; align-items: center; color: #666;'>Results will appear here</div>")
submit_button.click(
fn=categorize_products_from_text,
inputs=[text_input, top_n, confidence],
outputs=text_output
)
with gr.TabItem("File Upload"):
with gr.Row():
with gr.Column(scale=2):
file_input = gr.File(
label="Upload JSON or text file with products",
file_types=[".json", ".txt"]
)
with gr.Accordion("Help", open=False):
gr.Markdown("""
- JSON files should contain either:
- A list of objects with a 'name' field for each product
- A simple array of product name strings
- Text files should have one product name per line
""")
with gr.Row():
with gr.Column(scale=1):
file_top_n = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Top Categories"
)
with gr.Column(scale=1):
file_confidence = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.5,
step=0.05,
label="Confidence Threshold"
)
file_button = gr.Button("Process File", variant="primary")
with gr.Column(scale=3):
file_output = gr.HTML(
label="Categorization Results",
value="<div style='height: 450px; display: flex; justify-content: center; align-items: center; color: #666;'>Upload a file to see results</div>"
)
file_button.click(
fn=categorize_products_from_file,
inputs=[file_input, file_top_n, file_confidence],
outputs=file_output
)
# Footer
gr.HTML("""
<div style="margin-top: 20px; text-align: center; color: #666;">
Powered by Voyage AI embeddings • Built with Gradio
</div>
""")
# For Hugging Face Spaces compatibility - do not remove
if __name__ == "__main__":
app.launch()