Spaces:
Sleeping
Sleeping
# import gradio as gr # Removed Gradio import | |
# from utils import SafeProgress # Removed SafeProgress import | |
from embeddings import create_product_embeddings | |
from similarity import compute_similarities | |
from openai_expansion import expand_product_descriptions | |
from ui_core import embeddings, parse_input, CATEGORY_EMBEDDINGS_PATH | |
from ui_formatters import format_reranking_results_html | |
from api_utils import get_openai_client, process_in_parallel, rank_ingredients_openai, rank_categories_openai | |
from category_matching import load_categories, load_category_embeddings | |
import json | |
def categorize_products_with_openai_reranking(product_input, is_file=False, use_expansion=False, | |
embedding_top_n=20, top_n=10, confidence_threshold=0.5, | |
match_type="ingredients"): # Removed progress parameter | |
""" | |
Categorize products using OpenAI reranking with optional description expansion | |
""" | |
# Removed Gradio progress tracking | |
# progress_tracker = SafeProgress(progress) | |
# progress_tracker(0, desc="Starting OpenAI reranking...") | |
# Parse input | |
product_names, error = parse_input(product_input, is_file) | |
if error: | |
return error | |
# Validate embeddings are loaded if doing ingredient matching | |
if match_type == "ingredients" and not embeddings: | |
return "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>Error: No ingredient embeddings loaded. Please check that the embeddings file exists and is properly formatted.</div>" | |
# Optional description expansion | |
expanded_descriptions = {} | |
if use_expansion: | |
# progress_tracker(0.2, desc="Expanding product descriptions...") # Removed progress | |
expanded_descriptions = expand_product_descriptions(product_names) # Removed progress argument | |
# Get shared OpenAI client | |
openai_client = get_openai_client() | |
products_for_embedding = '' | |
if match_type == "ingredients": | |
# Generate product embeddings | |
# progress_tracker(0.4, desc="Generating product embeddings...") # Removed progress | |
if use_expansion and expanded_descriptions: | |
# Use expanded descriptions for embedding creation when available | |
products_for_embedding = [expanded_descriptions.get(name, name) for name in product_names] | |
# Map expanded descriptions back to original product names for consistent keys | |
product_embeddings = {} | |
temp_embeddings = create_product_embeddings(products_for_embedding, original_products=product_names) # Removed progress, pass original names | |
# Ensure we use original product names as keys | |
for i, product_name in enumerate(product_names): | |
if i < len(products_for_embedding) and products_for_embedding[i] in temp_embeddings: | |
product_embeddings[product_name] = temp_embeddings[products_for_embedding[i]] | |
else: | |
# Standard embedding creation with just product names | |
product_embeddings = create_product_embeddings(product_names) # Removed progress | |
# Compute embedding similarities for ingredients | |
# progress_tracker(0.6, desc="Computing ingredient similarities...") # Removed progress | |
all_similarities = compute_similarities(embeddings, product_embeddings) | |
print(f"product_names: {product_names}") | |
print(f"products_for_embedding: {products_for_embedding}") | |
# print(f"all_similarities: {all_similarities}") | |
if not all_similarities: | |
return "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>Error: No similarities found. Please try different product names.</div>" | |
# progress_tracker(0.7, desc="Re-ranking with OpenAI...") # Removed progress | |
# Function for processing each product | |
def process_reranking(product): | |
if product not in all_similarities: | |
return product, [] | |
candidates = all_similarities[product][:embedding_top_n] | |
if not candidates: | |
return product, [] | |
candidate_ingredients = [c[0] for c in candidates] | |
expanded_text = expanded_descriptions.get(product, product) if use_expansion else product | |
try: | |
# Use the shared utility function - now passing 0.0 as threshold to get all results | |
# We'll apply the threshold at display time | |
reranked_ingredients = rank_ingredients_openai( | |
product=product, | |
candidates=candidate_ingredients, | |
expanded_description=expanded_text, | |
client=openai_client, | |
model="gpt-4o-mini", | |
max_results=top_n, | |
confidence_threshold=0.0, # Don't filter here, do it at display time | |
debug=True | |
) | |
return product, reranked_ingredients | |
except Exception as e: | |
print(f"Error reranking {product}: {e}") | |
# Fall back to top embedding match | |
return product, candidates[:1] # Don't filter here | |
# Process all products in parallel | |
final_results = process_in_parallel( | |
items=product_names, | |
processor_func=process_reranking, | |
max_workers=min(10, len(product_names)) # Moved max_workers inside | |
# Removed progress tracking arguments | |
) # Corrected closing parenthesis | |
else: # categories | |
# Load category embeddings instead of JSON categories | |
# progress_tracker(0.5, desc="Loading category embeddings...") # Removed progress | |
category_embeddings = load_category_embeddings() | |
if not category_embeddings: | |
return "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>Error: No category embeddings found. Please check that the embeddings file exists at data/category_embeddings.pickle.</div>" | |
# Generate product embeddings | |
# progress_tracker(0.6, desc="Generating product embeddings...") # Removed progress | |
if use_expansion and expanded_descriptions: | |
# Use expanded descriptions for embedding creation when available | |
products_for_embedding = [expanded_descriptions.get(name, name) for name in product_names] | |
# Map expanded descriptions back to original product names for consistent keys | |
product_embeddings = {} | |
temp_embeddings = create_product_embeddings(products_for_embedding, original_products=product_names) # Removed progress, pass original names | |
# Ensure we use original product names as keys | |
for i, product_name in enumerate(product_names): | |
if i < len(products_for_embedding) and products_for_embedding[i] in temp_embeddings: | |
product_embeddings[product_name] = temp_embeddings[products_for_embedding[i]] | |
else: | |
# Standard embedding creation with just product names | |
product_embeddings = create_product_embeddings(product_names) # Removed progress | |
# Compute embedding similarities for categories | |
# progress_tracker(0.7, desc="Computing category similarities...") # Removed progress | |
all_similarities = compute_similarities(category_embeddings, product_embeddings) | |
if not all_similarities: | |
return "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>Error: No category similarities found. Please try different product names.</div>" | |
# Collect all needed category IDs first - don't filter by threshold here | |
needed_category_ids = set() | |
for product, similarities in all_similarities.items(): | |
for category_id, score in similarities[:embedding_top_n]: | |
needed_category_ids.add(category_id) | |
# Load only the needed categories from JSON | |
# progress_tracker(0.75, desc="Loading category descriptions...") # Removed progress | |
category_descriptions = {} | |
if needed_category_ids: | |
try: | |
with open("categories.json", 'r') as f: | |
categories_list = json.load(f) | |
for item in categories_list: | |
if item["id"] in needed_category_ids: | |
category_descriptions[item["id"]] = item["text"] | |
except Exception as e: | |
print(f"Error loading category descriptions: {e}") | |
# Function to process each product | |
def process_category_matching(product): | |
if product not in all_similarities: | |
return product, [] | |
candidates = all_similarities[product][:embedding_top_n] | |
print(f"candidates: {candidates}") | |
if not candidates: | |
return product, [] | |
# Get the expanded description or use product name if no expansion | |
expanded_text = expanded_descriptions.get(product, product) if use_expansion else product | |
try: | |
# FIXED: Filter categories to only include those in the current product's candidates | |
product_category_ids = [cat_id for cat_id, _ in candidates] | |
filtered_categories = {cat_id: category_descriptions[cat_id] | |
for cat_id in product_category_ids | |
if cat_id in category_descriptions} | |
# Pass 0.0 as threshold to get all results - apply threshold at display time | |
category_matches = rank_categories_openai( | |
product=product, | |
categories=filtered_categories, # Pass only this product's relevant categories | |
expanded_description=expanded_text, | |
client=openai_client, | |
model="gpt-4o-mini", | |
max_results=top_n, | |
confidence_threshold=0.0, # Don't filter here | |
debug=True | |
) | |
# Format results with category descriptions if needed | |
formatted_matches = [] | |
for category_id, score in category_matches: | |
category_text = category_descriptions.get(category_id, "Unknown category") | |
formatted_matches.append((category_id, category_text, score)) | |
return product, formatted_matches | |
except Exception as e: | |
print(f"Error matching {product} to categories: {e}") | |
return product, [] | |
# Process all products in parallel | |
final_results = process_in_parallel( | |
items=product_names, | |
processor_func=process_category_matching, | |
max_workers=min(10, len(product_names)) # Restored max_workers inside the call | |
# Removed progress tracking arguments | |
) # Correctly placed closing parenthesis | |
# Format results | |
# progress_tracker(0.9, desc="Formatting results...") # Removed progress | |
# Create a list of result dictionaries in consistent format | |
formatted_results = [] | |
for product, matches in final_results.items(): | |
# Include all products, even with no matches | |
formatted_result = { | |
"product_name": product, | |
"confidence": max([item[-1] for item in matches]) if matches else 0, | |
"matching_items": [], | |
"item_scores": [], # Add item_scores to align with Voyage implementation | |
"explanation": expanded_descriptions.get(product, "") if use_expansion else "" | |
} | |
# Format matching items based on match type | |
if match_type == "ingredients": | |
formatted_result["matching_items"] = [item for item, score in matches] | |
formatted_result["item_scores"] = [score for item, score in matches] | |
else: # categories | |
for cat_id, cat_desc, score in matches: | |
formatted_result["matching_items"].append( | |
f"{cat_id}: {cat_desc}" if cat_desc else f"{cat_id}" | |
) | |
formatted_result["item_scores"].append(score) | |
formatted_results.append(formatted_result) | |
if not formatted_results: | |
return "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>No results found. Please check your input or try different products.</div>" | |
result_html = format_reranking_results_html( | |
results=formatted_results, | |
match_type=match_type, | |
show_scores=True, | |
include_explanation=use_expansion, | |
method="openai", | |
confidence_threshold=confidence_threshold # Pass the threshold to the formatter | |
) | |
# progress_tracker(1.0, desc="Done!") # Removed progress | |
return result_html |