Spaces:
Sleeping
Sleeping
import pickle | |
import json | |
import os | |
class SafeProgress: | |
"""Wrapper for progress tracking that handles None gracefully""" | |
def __init__(self, progress_obj=None): | |
self.progress = progress_obj | |
def __call__(self, value, desc=""): | |
if self.progress is not None: | |
try: | |
self.progress(value, desc=desc) | |
except: | |
print(f"Progress {value}: {desc}") | |
else: | |
print(f"Progress {value}: {desc}") | |
def load_embeddings(embeddings_path): | |
"""Load ingredient embeddings from pickle file""" | |
print(f"Loading ingredient embeddings from {embeddings_path}") | |
with open(embeddings_path, "rb") as f: | |
ingredients_embeddings = pickle.load(f) | |
print(f"Loaded {len(ingredients_embeddings)} ingredient embeddings") | |
return ingredients_embeddings | |
def parse_product_file(file_path): | |
"""Parse a file containing product data and extract product names""" | |
try: | |
with open(file_path, 'r') as f: | |
try: | |
products_data = json.load(f) | |
if isinstance(products_data, list): | |
# Extract product names if it's a list of objects with 'name' field | |
if all(isinstance(item, dict) for item in products_data): | |
product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)] | |
else: | |
# If it's just a list of strings | |
product_names = [str(item) for item in products_data if item] | |
else: | |
# If it's just a list of product names | |
product_names = [] | |
except json.JSONDecodeError: | |
# If not JSON, try reading as text file with one product per line | |
f.seek(0) | |
product_names = [line.strip() for line in f.readlines() if line.strip()] | |
except Exception as e: | |
raise Exception(f"Error reading file: {str(e)}") | |
return product_names | |
def format_categories_html(product, similarities, chicory_result=None): | |
"""Format the similarities as HTML with bootstrap styling""" | |
html = f"<div class='product-result'><h3 style='color: #fff;'>{product}</h3>" | |
# Add Chicory results with enhanced styling | |
if chicory_result: | |
html += "<div class='result-section chicory-section' style='background-color: #1a3c6e; color: white; padding: 15px; border-radius: 5px; margin: 10px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>" | |
html += "<h4 style='margin-top: 0; border-bottom: 1px solid rgba(255,255,255,0.3); padding-bottom: 8px;'>Chicory Parser Results</h4>" | |
if isinstance(chicory_result, dict): | |
# Extract important fields with better formatting | |
ingredient = chicory_result.get("ingredient", "Not found") | |
confidence = chicory_result.get("confidence", 0) | |
confidence_pct = int(confidence * 100) if confidence else 0 | |
html += f"<div style='display: flex; justify-content: space-between; align-items: center; background-color: rgba(255,255,255,0.1); padding: 10px; border-radius: 4px;'>" | |
html += f"<span style='font-size: 1.1em;'>{ingredient}</span>" | |
html += f"<span style='background-color: {get_confidence_bg_color(confidence)}; color: {get_confidence_text_color(confidence)}; padding: 4px 8px; border-radius: 12px; font-weight: bold;'>{confidence_pct}%</span>" | |
html += "</div>" | |
html += "</div>" | |
# Add embedding similarities with matching styling | |
if similarities: | |
html += "<div class='result-section embedding-section' style='background-color: #263238; color: white; padding: 15px; border-radius: 5px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>" | |
html += "<h4 style='margin-top: 0; border-bottom: 1px solid rgba(255,255,255,0.3); padding-bottom: 8px;'>Embedding Similarity</h4>" | |
for i, (ingredient, score) in enumerate(similarities): | |
confidence_pct = int(score * 100) | |
html += f"<div style='display: flex; justify-content: space-between; align-items: center; padding: 8px; border-radius: 4px; margin: 4px 0; background-color: rgba(255,255,255,{0.07 + (i * 0.01)});'>" | |
html += f"<span>{ingredient}</span>" | |
html += f"<span style='background-color: {get_confidence_bg_color(score)}; color: {get_confidence_text_color(score)}; padding: 4px 8px; border-radius: 12px; font-weight: bold;'>{confidence_pct}%</span>" | |
html += "</div>" | |
html += "</div>" | |
else: | |
html += "<p style='color: #b0bec5; font-style: italic; padding: 10px; background-color: rgba(255,255,255,0.05); border-radius: 4px; margin: 10px 0;'>No similar ingredients found above the confidence threshold.</p>" | |
html += "</div>" | |
return html | |
def get_confidence_color(score): | |
"""Get color based on confidence score""" | |
if score >= 0.8: | |
return "#1a8a38" # Strong green | |
elif score >= 0.65: | |
return "#4caf50" # Medium green | |
elif score >= 0.5: | |
return "#8bc34a" # Light green | |
else: | |
return "#9e9e9e" # Gray | |
def get_confidence_bg_color(score): | |
"""Get background color for confidence badge based on score""" | |
if score >= 0.8: | |
return "#2e7d32" # Dark green | |
elif score >= 0.65: | |
return "#558b2f" # Medium green | |
elif score >= 0.5: | |
return "#9e9d24" # Light green/yellow | |
else: | |
return "#757575" # Gray | |
def get_confidence_text_color(score): | |
"""Get text color that's readable on the confidence background""" | |
if score >= 0.5: | |
return "#ffffff" # White text on dark backgrounds | |
else: | |
return "#f5f5f5" # Light gray on gray background |